
Partial Differential Equations

Domain and Boundary
• Domain Ω is an open subset of Rn (meaning all points are

interior points)
• Boundary has to meet conditions:
• Dirichlet boundary conditions: specify values u on ∂Ω:

u(x) = f(x) ∀x ∈ ∂Ω

• Neumann boundary conditions: specify derivatives of u on
boundary. Only derivatives orthogonal to the boundary
give additional information:
normal derivative: ∂u

∂n
= g(x) ∀x ∈ ∂Ω

Classification

Linearity
Given an equation involving a function u(x), x ∈ R and its
derivatives, there is a function F describing the relation:

F


x, y, z, p, q, s, t, r, . . .

↓ (corresponding to) ↓
x, y, u, ∂u

∂x
, ∂u
∂y

, ∂2u
∂x2 ,

∂2u
∂x∂y

, ∂2u
∂y2 , . . .

 = 0

(common variable names pi → ∂u
∂xi

and tij → ∂2u
∂xi∂xj

)
A PDE is linear when function F is linear in
u, p1, . . . , pn, t11, . . . , tnn, . . . .
A PDE is quasilinear when function F is linear in
p1, . . . , pn, t11, . . . , tnn, . . . .
For example, given the heat equation ut = κuxx, F would be
F (p1, t22) = p1 − κt22.

2nd Order PDEs: Symbol Matrix 
The symbol matrix of the 2nd order partial differential operator

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x)

is the symmetric matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


For example:

The type of equation can be inferred by the sign of the
eigenvalues λ1, . . . , λn of the symbol matrix. Calculating the
determinant (detA =

∏
i λi) and trace (tr A =

∑
i λi) reveals

information about the signs of its eigenvalues:

Two Variables of PDE

detA


> 0 elliptic (eigenvalues have same sign)
= 0 parabolic (at least one eigenvalue is zero)
< 0 hyperbolic (eigenvalues have opposite sign)

Three Variables of PDE

rank A < 2 ⇒ not classified
detA and tr A have different sign ⇒ hyperbolic

detA = 0, semidefinite (Cholesky decomp.) ⇒ parabolic
A or −A positive definite (Cholesky) ⇒ elliptic

all other cases ⇒ hyperbolic

Quasilinear PDEs
Characteristics 
The PDE

a(x, y, u)
∂u

∂x
+ b(x, y, u)

∂u

∂y
= c(x, y, u)

can be written in vector notation:

a(x, y, u)

b(x, y, u)

c(x, y, u)


︸ ︷︷ ︸

t⃗

·


∂u
∂x
∂u
∂y

−1


︸ ︷︷ ︸

n⃗

= 0

where n⃗ is a normal vector and
t⃗ is always tangential to the solution
surface. Therefore, we can elaborate a
solution algorithm:

1. Using the Cauchy initial curve, we formulate

v⃗(s) =
(
vx(s) vy(s) vz(s)

)T
which is a point on the initial curve, parameterised by s.

2. Find characteristic curves as solution of the ODEs

d

dt

x(t, s)y(t, s)

z(t, s)

 =

a(x(t, s), y(t, s), z(t, s))b(x(t, s), y(t, s), z(t, s))

c(x(t, s), y(t, s), z(t, s))


withx(0, s)y(0, s)

z(0, s)

 = v⃗(s) =

vx(s)vy(s)

vz(s)


3. Eliminate the variables t and s and condense solution into

a function u(x, y):

x = x(t, s)

y = y(t, s)

u = z(t, s)

 u = u(x, y)

Linear PDEs
Separation 

Conditions, when separation may be successful:

• Homogeneous, linear PDE

• Homogeneous boundary conditions

• Domain must be a cartesian product (i.e. some form of
rectangle when in cartesian coordinate system)

if these are given, we can try:

1. Assume the structure of the solution to be in the form of
some ansatz with separable variables, usually a product
u(x, y) = X(x) · Y (y)

2. Substitute u in PDE with ansatz by variable:

all terms of x = all terms of y = λ

and solve the ordinary differential equations for X(x) and
Y (y).

3. Use homogeneous boundary conditions to determine
admissible values λk.

4. Solve equations: Xk(x) and Yk(y)
⇒ uk(x, y) = Xk(x) · Yk(y) using ansatz.

5. Combine solutions: u(x, y) =
∑

k∈Z (akuk(x, y))

6. Use remaining boundary conditions to determine ak.



Separation Example Given the wave equation
∂2u
∂t2

= ∂2u
∂x2 for a string mounted between u(0, t) = u(π, t) = 0

and is in the rest position at t = 0: u(x, 0) = 0 but has initial
velocity ∂u

∂t
(0, x) = sin3(x) = 3

4
sinx− 1

4
sin 3x. We choose the

Ansatz u(x, t) = X(x)T (t):

X(x)T ′′(t) = X′′(x)T (x) | ÷X(x)T (t)

T ′′(t)÷ T (t) = X′′(x)÷X(x) = µ

Hence, we receive the ODEs

µT (t) = T ′′(t)

µX(x) = X′′(x)

with µ < 0 to receive oscillating solutions, the ODEs have the
solutions

X(x) = C sin(√µx) +(((((D cos(√µx)

T (t) = A sin(√µt) +B cos(√µt)

by taking into account the boundary conditions
X(0) = X(π) = 0, yielding C = 1, D = 0 and

√
n ∈ N. Therefore,

we have the general solution

u(x, t) =
∞∑

n=1

sin(nx) · (An sin(nt) +Bn cos(nt))

=
∞∑

n=1

An sin(nx) sin(nt) +
∞∑

n=1

Bn sin(nx) cos(nt)

considering the boundary conditions:

u(x, 0) = 0 =
∞∑

n=1

Bn sin(nx) cos(0)︸ ︷︷ ︸
=1

⇒ Bn = 0

and

∂u

∂t
=

∞∑
n=1

nAn sin(nx) cos(nt)

→
∂u

∂t
(x, 0) =

∞∑
n=1

nAn sin(nx) = 3

4
sinx−

1

4
sin 3x

⇒ A1 = 3/4, A3 = −1/12, An\{1,3} = 0

⇒ u(x, t) = (3/4) sin(x) sin(t)− (1/12) sin(3x) sin(3t)

Transformation 
1. Transform equation in the unbounded variable (e.g. t):

derivatives turn into algebraic expressions:(
L
∂u(t, y)

∂t

)
(s) = s (Lf)(s, y)︸ ︷︷ ︸

=ys(y)

−u(0, y)

2. Transform y-boundary conditions: gives boundary
conditions for

u(t, 0) = g(t)

ys(0) = (Lu(t, 0))(s) = (Lg)(s)

3. Solve PDE with fewer derivatives, ODEs
4. Inverse transform

In general, one could use the following transforms:
Domain Transform
[−π, π] Fourier Series

[a, b] Fourier Series
R Fourier Transform

R+ Laplace Transform
G Generalised Fourier Theory

Laplace Transform
(Only works on linear equations.) The Laplace transform of a
function f : R+ → R is the function

Lf : R+ → R : s ↣ Lf(s) =
∫ ∞

0
f(t)e−st dt

It is linear:

L(αf + βf) = αLf + βLf

Example transformations:

Constant: Exponential: Derivative:
f(t) = c f(t) = e−ct f(t) = g(n)(t)

(Lf)(s) = c
s

(Lf)(s) = 1
c+s

(Lf (n))(s) =

−f (n−1)(0) + s
(
Lf (n−1)

)
(s)

(removes t-derivatives: ∂
∂t

→ s)

Fourier Transform
For f : R → C : x ↣ f(x) the Fourier transform of f is defined as

Ff = f̂ : R → C : k ↣ 1
√
2π

∫ ∞

−∞
f(x)e−ikx dx

It turns the derivative ∂
∂x

into a multiplication by −ik (second
derivatives are reduced to i2 = −1):

(Ff (n))(k) = (ik)nFf(k)

The function f can be recovered from f̂ by

f(x) = (F−1f̂)(x) =
1

√
2π

∫ ∞

−∞
f̂(k)eikx dk

PDEs of Second Order
Linear PDEs of second order have the form

n∑
i,j=1

aij
∂2

∂xi∂xj
u+

n∑
i=1

bi
∂

∂xi
u+ cu = f

The equations fall into these categories: Elliptic (potential
problem), parabolic (heat equation, diffusion) and hyperbolic
(wave equation, linearised supersonic flow).

Splitting the Solution 
Given a second order linear differential operator L, we have the
PDE Lu = f in Ω with u = g on ∂Ω.

1. We try to find a particular solution Lup = f in Ω,
satisfying only the PDE and neglecting boundary
conditions

2. To solve the original problem, we need an additional
summand ur taking care of boundary values to receive the
solution up + ur. However, ur still needs to solve the PDE
but due to linearity, this reduces to a homogeneous
problem:

L(up + ur) = f + Lur = f ⇒ Lur = 0 in Ω

3. Ensure that the boundary conditions are satisfied:

up + ur = g ⇒ ur = g − up on ∂Ω

4. If the solution is not unique, we’re able to find other
solutions using an additional term uh:

L(up + ur + uh) = f + Luh ⇒ Luh = 0 in Ω

up + ur + uh = g + uh ⇒ uh = 0 on ∂Ω

For example, consider the PDE ∇2u = 4 in
Ω = {(x, y) | x2 + y2 < 1} and u = 0.5x+ 0.5 on ∂Ω. This has
the particular solution up(x, y) = x2 + y2. To fix boundary
conditions, we find a solution ur of the homogeneous problem
with boundary values
ur = 0.5x+ 0.5− up(x, y) = 0.5x+ 0.5− 1︸︷︷︸

on ∂Ω

= 0.5x− 0.5

giving the complete solution
u(x, y) = up(x, y) + ur(x, y) = x2 + y2 + 0.5x− 0.5.

Elliptic PDEs
Maximum Principle for Elliptic Operators
Theorem: If L is an elliptic differential operator on a connected
and bounded domain Ω, and u is a solution Lu = 0, then u takes
its maximum and minimum on the boundary of Ω.

Uniqueness of Solutions
Theorem: If L is an elliptic differential operator on a connected
and bounded domain Ω, then there is at most one solution of
Lu = f with boundary conditions u|∂Ω = g.

Green’s Function 

Heaviside function: ϑ(x− ξ) =

{
1 ξ ≤ x

0 ξ > x
translates the

integral
∫ x
0 f(ξ)dξ to

∫ 1
0 ϑ(x− ξ) · f(ξ)dξ for ξ in [0, 1].

Given the Laplace equation ∇2u = f , we want to find an
“inverse” Laplace such that

u(x) =

∫
G(x, ξ)f(ξ) dξ

There is a function G(x, ξ) on Ω̄× Ω̄ called Green’s function such
that

∆G(x, ξ) = δ(x− ξ) in Ω and G(x, ξ) = 0 for ξ ∈ ∂Ω



the general Poisson problem ∆u = f in Ω with boundary
conditions u = g on ∂Ω has the solution

u(x) =

∫
Ω
G(x, ξ)f(ξ) dξ +

∫
∂Ω

g(ξ) · gradξG(x, ξ) dn

with n is an outside pointing normal. To construct a particular
solution up of ∆u = f on Ω ⊂ Rn, there are the following Green’s
functions (using Dirac-δ function):

G(x, ξ) =


1
2
|x− ξ| for n = 1

1
2π

log |x− ξ| for n = 2
1
4π

1
|x−ξ| for n = 3

⇒ ∆G(x, ξ) = δ(x− ξ)

then up(x) =
∫
Ω G(x, ξ)f(ξ) dξ.

Hyperbolic PDEs
D’Alembert Solution of Wave Equation
The wave equation can be factorized:

0 =
∂2u

∂t2
− a2

∂2u

∂x2
=

(
∂

∂t
− a

∂

∂x

)(
∂

∂t
− a

∂

∂x

)
u

giving two quasilinear PDEs of which the superposition is a
solution:
u(t, x) = u+(x− at) + u−(x+ at)

Strip and Characteristics
Consider the hyperbolic equation

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
= g − d

∂u

∂x
+ e

∂u

∂y
+ fu = h.

A strip then is a curve (x(s), y(s), u(x)) together with the slopes
of the tangent planes p(s) = ∂u

∂x
and q(s) = ∂u

∂y
.

Consequence: A solu-
tion u(t, x) of the wave equation determines a strip for each value t:
x(s) = s t(s) = t u(s) = u(t, s) p(s) = ∂u

∂x
(s, t) q(s) = ∂u

∂t
(s, t)

with an initial strip
x(s) = s t(s) = 0 u(s) = f(s) p(s) = f ′(s) q(s) = g(s)
the Cauchy-Problem therefore has to be formulated in terms of
the strip.
The second partial derivatives are then determined by the linear
system

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
= h(s) = g − dp(s)− eq(s)− fu

ẋ(s)
∂2u

∂x2
+ ẏ(s)

∂2u

∂x∂y
= ṗ(s)

ẋ(s)
∂2u

∂x∂y
+ ẏ(s)

∂2u

∂y2
= q̇(s)

The characteristics of a differential equation are the curves
t 7→ (x(t), y(t)) for which the initial data does not determine the
second partial derivatives uniquely and thus, determinant of the
linear system is zero

det

 a 2b c

ẋ(s) ẏ(s) 0

0 ẋ(s) ẏ(s)

 = 0

The determinant is constructible from the symbol matrix A and
we thus receive a differential equation for the characteristics:

A =

[
a b

b c

]
⇒ aẏ(s)2 − 2bẋ(s)ẏ(s) + cẋ(s)2 = 0

(note: t is the mapping variable of the curve, if the PDE uses
time (e.g. wave) s may be used)
The equation for the characteristics can be simplified for
non-constant by dividing by e.g. ẋ(s)2. For example:

xẏ(s)2 + ẋ(s)ẏ(s) + ẋ(s)2 = 0 | ÷ ẋ(s)2

= x
ẏ(s)2

ẋ(s)2
+

ẏ(s)

ẋ(s)
+ 1 = 0

∣∣∣∣ ẏ/ẋ =
dy/ds

dx/ds
= y′

= x(y′)2 + y′ + 1 = 0

which is a quadratic first order differential equation that can be
factored into two first order linear differential equations.
Property: Touch Characteristics touch if the equation

a(y′)2 − 2by′ + c = 0

has one solution for y′. The different solutions intersect, if there
are multiple solutions for y’ (0 6= (−2b)2 − 4ac = −4 detA > 0).
⇒ Different solution surfaces touch along characteristic curves.
Property: Influence We can find the boundaries influencing a
certain point P by first finding the characteristic curves that
intersect the point by solving the ODEs and setting the constants
based on x- and y-values of P and afterwards, calculating using
the curves where they start on the boundary.
Summary Characteristic curves are the curves that are not
possible as Cauchy initial curve and describe the evolution of a
PDE.

Numerical Methods
Discretisation of Operators
∂g

∂x
≈

g(x+∆x)− g(x)

∆x

∂2g

∂x2
≈

g(x+∆x)− 2 · g(x) + g(x−∆x)

∆x2

(∆ referring to step size)

Discrete Laplace-Operator / Five-Point-Star Operator
Setting h = ∆x = ∆y, then ∇2u is

1

h2

u(x+ h, y)︸ ︷︷ ︸
East

+u(x, y + h)︸ ︷︷ ︸
North

+u(x− h, y)︸ ︷︷ ︸
West

+u(x, y − h)︸ ︷︷ ︸
South

− 4u(x, y)︸ ︷︷ ︸
Center


Finite Difference Method for Elliptic
PDEs
In case of a one-dimensional domain:

1. Given the differential equation Lu(x) = f(x)

2. Discretise domain. E.g. we have x
(n)
k = k ·∆x with

∆x = 1/n.
3. Discretise equation using discrete operators

4. Replace functions u(x) and f(x) by vectors of nodal
values: u

(n)
k = u

(
x
(n)
k

)
and f

(n)
k = f

(
x
(n)
k

)
5. Solve for A(n) · ũ(n) = f (n) for inner knots while

considering boundary conditions.

One-Dimensional Example

The boundary value problem
u′′(x) = 4 · (u(x)− x) = 4u(x)− 4x, x ∈]0, 1[ with u(0) = 0 and
u(1) = 2 should be approximated by function ũ(x) using FDM
with ∆x = 1/4.

The discretised equation therefore is:

uk+1 − 2uk + uk−1

∆x2
= 4uk − 4xk (k = 1, . . . , n− 1)

giving us the linear system

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ũ2−2ũ1+��>
=0

ũ0

��*=1/16

∆x2

= 4ũ1 − 4��*
1/4

x1

ũ3−2ũ2+ũ1

��*=1/16

∆x2

= 4ũ2 − 4��*
2/4

x2

��>
=2

ũ4−2ũ3+ũ2

��*=1/16

∆x2

= 4ũ3 − 4��*
3/4

x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
resulting in

−32ũ1 + 16ũ2 = 4ũ1 − 1 → −36ũ1 + 16ũ2 = −1

16ũ1 − 32ũ2 + 16ũ3 = 4ũ2 − 2 → 16ũ1 − 36ũ2 + 16ũ3 = −2

16ũ2 − 32ũ3 + 16 · 2 = 4ũ3 − 3 → 16ũ2 − 36ũ3 = −35

ultimately giving the equation in matrix form (optional):

−36 16 0

16 −36 16

0 16 −36

 ·

ũ1

ũ2

ũ3

 =

 −1

−2

−35



giving the approximation vector ũ ≈ (0.4, 0.83, 1.34).



Two-Dimensions Example
We have Poisson’s differential equation −∆u(x, y) = f(x, y) with
f(x, y) =

(
(3x+ x2) · y(1− y) + (3y + y2) · x(1− x)

)
· ex+y on

Ω = [0, 1]× [0, 1] with homogeneous boundary conditions. Setting
h = ∆x = ∆y = 1

3
, we can use the discrete Laplace operator.

Discretisation of the geometry yields

and we can define for each inner node an equation:

u1 : −
ũ2 + ũ3 +��*

0
y1 +��*

0
x1 − 4ũ1

���*
(1/3)2

1/h2

= f(1/3, 1/3) = f1

u2 : −
0 + ũ4 + ũ1 + 0− 4ũ2

(1/3)2
= f(2/3, 1/3) = f2

u3 : −
ũ4 + 0 + 0 + ũ1 − 4ũ3

(1/3)2
= f(1/3, 2/3) = f3

u4 : −
0 + 0 + ũ3 + ũ2 − 4ũ4

(1/3)2
= f(2/3, 2/3) = f4

giving the linear system:

−9 ·


−4 1 1 0

1 −4 0 1

1 0 −4 1

0 1 1 −4



ũ1

ũ2

ũ3

ũ4

 =


f1

f2

f3

f4


Finite Differences Method for Parabolic
PDEs
Richardson’s Explicit FD Scheme 

1. Discretise parabolic PDE Lu(...) = f(...) using discrete
operators

2. Discretise geometry by introducing a grid:
xj,k = (j ·∆x, k ·∆t) with j as the local index and k as
the time index where k = 0 is on boundary and ∆x = 1

n
,

∆t = r
n2 and r = ∆t

∆x2

3. Introduce approximated nodal values ũ(xj,k) = ũj,k and
fj = f(xj , 0) for the Dirichlet boundary conditions.

4. Find a matrix C that satisfies

ũ
(k+1)
j = rũ

(k)
j−1 + (1− 2r)ũ

(k)
j + r · ũ(k)

j+1

for inner grid points for each “step“ satisfying boundary
conditions: ũ

(0)
j = ũj,0 = fj

5. Iteratively generate solution vector using ũ(k+1) = C · ũ(k)

(i.e. ũ(k) = Ck · f⃗)

Stability Analysis
The scheme of Richardson tends asymptotically
to zero with k to infinity if for eigenvalues
of C, |λmax| < 1 is true or ||C(n)|| < 1
with respect to the spectral norm of C.
We only receive a good
approximation if the steps are small enough
to “catch” enough information on the boundary.

Example Using Heat Equation
Given the heat equation ∂u

∂t
(x, t) = ∂2u

∂x2 (x, t) for the domain
Ω = [0, 1]× [0,∞[ with the boundary conditions u(x, 0) = ex,
u(0, t) = et and u(1, t) = e1+t, we want to find an approximation
ũ for points (1/3, 2/3), (2/3, 2/3) using ∆x = 1/3 and ∆t = 1/3.
Discretisation of Heat Equation:

u(x, t+∆t)− u(x, t)

∆t
≈

u(x+∆x, t)− 2 · u(x, t) + u(x−∆x, t)

∆x2

u(x, t+∆t) ≈ u(x, t) + ∆t ·
u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2

ũj,k+1 = uj,k + r · uj+1,k − 2uj,k + uj−1,k

∣∣∣∣ r =
∆t

∆x2

ũj,k+1 = r · ũj−1,k + (1− 2r)ũj,k + r · ũj+1,k

Discretisation of Geometry:

Solution Method: With r having a set value, we can write the
iterative equation as:

ũ
(k+1)
j = 3ũ

(k)
j−1 + 5ũ

(k)
j + 3ũ

(k)
j+1

and thus, for k + 1 = 1:

ũ
(1)
1 = 3�

�>
1

ũ
(0)
0 − 5�

�>
e1/3

ũ
(0)
1 + 3�

�>
e2/3

ũ
(0)
2 = 1.8651

ũ
(1)
2 = 3ũ

(0)
1 − 5ũ

(0)
2 + 3ũ

(0)
3 = 2.603

and k + 1 = 2:

ũ
(2)
1 = 3�

�>
e∆t·k

ũ
(1)
0 − 5ũ

(1)
1 + 3ũ

(1)
2 = 2.6702

ũ
(2)
2 = 3ũ

(1)
1 − 5ũ

(1)
2 + 3�

�>
e1+∆t·k

ũ
(1)
3 = 3.9614

Alternatively, using matrix C:[
ũ1

ũ2

](k+1)

=

[
−5 3

3 −5

]
︸ ︷︷ ︸

C

[
ũ1

ũ2

](k)
+ 3

[
e∆tk = e

k
3

e1+∆tk = e1+
k
3

]
︸ ︷︷ ︸

Dirichlet B.C.

and[
ũ1

ũ2

](2)
= C2⃗̃u(0) + C · 3

[
1

e

]
+ 3

[
e1/3

e4/3

]
=

[
2.6702

3.9614

]
Richardson’s Implicit Scheme 
Uses a backward finite difference for the discretisation in t:
∂u

∂t
≈

u(x, t)− u(x, t−∆t)

∆t

to be able to consider all boundary points. We therefore look for
a matrix E to receive a system of linear equations:
E · ũ(k+1) = ũ(k)

and get a solution by inverting (of course not suitable for
numerical tasks, only theoretical):

ũ(k+1) =
(
E(n)

)−1
· ũ(k)

The method is stable independently of r (absolute stability).
Example
Given the heat equation ∂u

∂t
(x, t) = ∂2u

∂x2 (x, t) for the domain
Ω = [0, 2]× [0,∞[ with boundary condition u(x, 0) = sin

(
πx
2

)
.

We want to find ũ(x, 0.1) using ∆x = 0.5 and ∆t = 0.05.

Discretisation of Heat Equation analogously like in the
explicit method:

ũ
(k)
j = −r · ũ(k+1)

j−1 + (1 + 2 · r) · ũ(k+1)
j − r · ũ(k+1)

j+1

Discretisation of Geometry

Solution
For k = 0:

j = 1 :−��

1
5

r ·�
�>

0

ũ
(1)
0 + 7/5 · ũ(1)

1 −��

1
5

r · ũ(1)
2 = f(1/2) = 1/

√
2

j = 2 :−��

1
5

r · ũ(1)
1 + 7/5 · ũ(1)

2 −��

1
5

r · ũ(1)
3 = f(1) = 1

j = 3 :−��

1
5

r · ũ(1)
2 + 7/5 · ũ(1)

3 −��

1
5

r ·�
�>

0

ũ
(1)
4 = f(3/2) = 1/

√
2



resulting in the linear system 7/5 −1/5 0

−1/5 7/5 −1/5

0 −1/5 7/5


︸ ︷︷ ︸

E

ũ1

ũ2

ũ3


(1)

=

1/
√
2

1

1/
√
2

⇒

ũ1

ũ2

ũ3


(1)

≊

0.6330.895

0.633



︷ ︸︸ ︷ 7/5 −1/5 0

−1/5 7/5 −1/5

0 −1/5 7/5


ũ1

ũ2

ũ3


(2)

=

0.6330.895

0.633

⇒

ũ1

ũ2

ũ3


(2)

≊

0.5670.801

0.567


Crank-Nicolson Scheme 
Averaging the explicit and implicit method of Richardson to
improve error term:

g′(x) =
1

2
·
(
g(x+∆x)− g(x)

∆x
+

g(x)− g(x−∆x)

∆x

)
+O(∆x2)

The Crank-Nicolson values at time-level k + 1 are computed by
solving the system of linear equations
F (n) · ⃗̃u(k+1) = G(n) · ⃗̃u(k)

which can formally be transformed into the linear iteration

⃗̃u(k+1) =
(
F (n)

)−1
·G(n) · ⃗̃u(k)

where the matrices F and G are for the heat equation ut = uxx:
F (n) = E(n) + I = tridiagn−1(−r, 2 + 2 · r,−r)

G(n) = C(n) + I = tridiagn−1(r, 2− 2 · r, r)
with
E(n) = tridiagn−1(−r, 1 + 2 · r,−r) (from implicit)
and
C(n) = tridiagn−1(r, 1− 2 · r, r) (from explicit)
Example
Given the heat equation ∂u

∂t
(x, t) = ∂2u

∂x2 (x, t) for the domain
Ω = [0, 3]× [0,∞[ and boundary condition
u(x, 0) = −25x2(x− 3), we want to find ũ(x, 2) using ∆x = 1 and
∆t = 0.5.
Discretisation of Geometry

Solution
With r = ∆t

∆x2 =
1/2
1

= 0.5, we receive the matrices

F =

[
3 −0.5

−0.5 3

]
, G =

[
1 0.5

0.5 1

]
and thus[
ũ1

ũ2

](k+1)

= F−1G

[
ũ1

ũ2

](k)
⇒
[
ũ1

ũ2

](4)
= (F−1G)4

[
ũ1 = 50

ũ2 = 100

](0)

Finite Differences Method for
Hyperbolic PDEs
Downwind Scheme 

 This scheme will in general diverge and frankly is .

1. Discretisation of operators of PDE Lu(...) = f(...)

2. Discretise geometry by introducing a grid:
xj,k = (j ·∆x, k ·∆t) with j as the local index and k as
the time index where k = 0 is on boundary and ∆x = 1

n
,

∆t = r
n

and r = ∆t
∆x

( in contrast to r = ∆t÷∆x2

for parabolic equations)
3. Find matrix ũj,k satisfying discretised equation for inner

grid points and ũj,0 = fj on boundary

Example Using Advection Equation
Given the advection equation ∂u

∂x
+ ∂u

∂t
= 0 on

Ω = (−∞,∞)× [0,∞) with Dirichlet’s boundary condition
u(x, 0) = f(x) = ex. We want to get approximation ũ(0, 1) using
∆x = 1/4 and ∆t = 1/4.

Discretisation of Operators

ũ(x, t+∆t)− ũ(x, t)

∆t
+

ũ(x+∆x, t)− ũ(x, t)

∆x
= 0

∣∣∣∣ ·∆t

(ũ(xj,k+1)− ũ(xj,k)) + r(ũ(xj+1,k)− ũ(xj,k)) = 0 (∆t÷∆x = r)

⇒ ũj,k+1 = (1 + r) · ũj,k − r · ũj+1,k (= discrete advection eq.)
Discretisation of Geometry

Solution Apply discrete advection eq. until u(4)
0 is reached.

Upwind Scheme 
We use a forward difference in t, just like in the downwind
scheme, but a backward difference in x.

Example Using Advection Equation
Given the advection equation ∂u

∂x
+ ∂u

∂t
= 0 on

Ω = (−∞,∞)× [0,∞) with Dirichlet’s boundary condition
u(x, 0) = f(x) being a box function on the interval [−1/2, 1/2]. We
want to get approximation ũ(x, 3/5) using ∆x = 2/5 and ∆t = 1/5.
Discretisation of Operators

The discrete advection equation for the upwind scheme is derived
from

ũ(x, t+∆t)− ũ(x, t)

∆t
+

ũ(x, t)− ũ(x−∆x, t)

∆x
= 0

and has the iterative form (with ũ
(0)
j = fj on ∂Ω):

ũ
(k+1)
j = (1− r) · ũ(k)

j + r · ũ(k)
j−1

Discretisation of Geometry

Solution Using ũ
(k+1)
j = 1/2 · ũ(k)

j + 1/2 · ũ(k)
j−1

Centred Scheme 

Uses a forward difference in t and a centred difference in x.

Example Using Advection Equation
Discretisation of Operators
The discrete advection equation for the centred scheme is derived
from the discretised equation:

ũ(x, t+∆t)− ũ(x, t)

∆t
+

ũ(x+∆x, t)− ũ(x−∆x, t)

2 ·∆x
= 0

and has the iterative form (with ũ
(0)
j = fj on ∂Ω):

ũ
(k+1)
j = − r

2
· ũ(k)

j+1 + ũ
(k)
j + r

2
· ũ(k)

j−1

Solution method is analogous to the upwind and downwind
scheme, just considering the left and right predecessor as well.

Lax-Wendroff Scheme 

Ideally, a second order numerical scheme has the form
ũj,k+1 = A · ũi+1,k +B · ũi,k + C · ũj−1,k. Concretely, for the
advection equation, the coefficients would be

A =
r2 − r

2
, B = 1− r2, C =

r2 + r

2
(r =

∆t

∆x
)



Leapfrog for Wave Equation 

Given the wave equation ∂2u

∂t2
=

∂2u

∂x
on Ω = [0, 1]× [0,∞) with

extra conditions

u(x, 0) = f(x) x ∈ [0, 1]

∂u
∂t

(x, 0) = g(x) x ∈ [0, 1]

u(0, t) = u(1, t) = 1 t ∈ [0,∞)

We discretise the geometry again:

x
(k)
j = (j ·∆x, k ·∆t) with ∆x =

1

n
and ∆t =

r

n

⇒ r = ∆t÷∆x

Calculate the first time level by

ũ
(1)
j = f(j ·∆x) + g(j ·∆x) ·∆t+ f ′′(j ·∆x) · ∆t2

2

afterwards, apply iteratively:

ũ
(k+1)
j = r2 ·+ ũ

(k)
j−1︸ ︷︷ ︸
left

2 · (1− r2) ·+ ũ
(k)
j︸︷︷︸

center

r2 · ũ(k)
j+1︸ ︷︷ ︸

right

− ũ
(k−1)
j︸ ︷︷ ︸

center past

Finite Volume Method for Elliptic PDEs
FVM for Poisson Problems (Voronoi) 

Divergence Theorem: Given a vector field f⃗(x, y). The flux
integral over the boundary ∂Γ satisfies:∮
∂Γ

f⃗(x, y) dn⃗ =

∫
Γ

div(f⃗(x, y)) dA (n⃗ = outer normal vector)

Integrating Poisson’s equation ∆u = f over a non-pathological
domain Γ ⊂ Ω leads to∫
Γ
∆u(x, y) dxdy =

∫
Γ
f(x, y) dxdy (f=0 for Laplacian eq.)

by the divergence theorem, this implies∮
∂Γ

grad(u(x, y)) dn⃗︸ ︷︷ ︸
Approx. by Voronoi cells

=

∫
Γ
f(x, y) dxdy

for all non-pathological domains Γ ⊂ Ω.
The left flux integral will then be discretised along a finite set of
normal derivatives for a discrete, polygonal cell:∮
∂Γ

· · · dn⃗ ≈
∑
j

=
u(Pj)− u(Pi)

δi,j
· λi,j

for each normal j of cell i with two cell points Pi, Pj and let δi,j
be the distance between the two cell points and λi,j the length of
the common edge of the two cells.
The right surface integral needs to be approximated numerically.
Easiest way: take function value at Voronoi point and multiply
by cell area (obviously not a very good approximation). For the
Lapace equation, it’s just zero.
We therefore receive a system of linear equations Av = f for the
cell values.

Discretisation of Geometry: Voronoi Cells We
can apply the following “algorithm”:

1. Replace curved boundary by some polygonal
approximation

2. Choose n Voronoi points Pk in Ω and construct for each
point its Voronoi cell

3. Compute points that are nearest to the corresponding
edge of the boundary where a cell has no close neighbour

Example
Given: The function u(x, y) in Ω = [0, 1]× [0, 1] satisfies
∆u(x, y) = 1. We want to find approximate values in the four
points (1/3, 1/3), (2/3, 1/3), (1/3, 2/3) and (2/3, 2/3)
Discretisation of Geometry:

Solution
The area of the cell is approximatively∫
Γp

f(x, y) dxdy ≈ f(P ) · h2 with cell length h which is always
1/4 in our case. Therefore, we formulate the linear system:
For ũ1:
Caution at boundary (): The dashed line usually has different
length there. In the example, it stayed the same due to the
equidistant points, but for e.g. 1/4 and 3/4 points, it would be
1/4 on boundary and 1/2 for inter-point distances.

ũ2 − ũ1

1/3
·
1

2
+

ũ3 − ũ1

1/3

1

2
+

0− ũ1

1/3︸︷︷︸


1

2
+

0− ũ1

1/3︸︷︷︸


1

2
=

∫∫
V1

1 dA =
1

4

3

2
(ũ2 − ũ1 + ũ3 − ũ1 − ũ1 − ũ1) =

1

4

ũ2 + ũ3 − 4ũ1 =
2

12
=

1

6

Due to symmetry, we receive:∣∣∣∣∣∣∣∣∣∣
−4ũ1 +ũ2 +ũ3 = 1/6

ũ1 −4ũ2 +ũ4 = 1/6

ũ1 −4ũ3 +ũ4 = 1/6

ũ2 +ũ3 −4ũ4 = 1/6

∣∣∣∣∣∣∣∣∣∣
with ũ = (−1/12,−1/12,−1/12,−1/12)

Finite Elements
Variational Problem: Method of Ritz 

Having a two-point boundary problem −u′′(x) = f(x) with
v(0) = v(1) = 0 on [0, 1], we need to find a function that
minimises the functional ϕ(v) =

∫ 1
0

1/2 · v′(x)2 − f(x) · v(x) dx

Idea of Ritz: Focusing on a vector subspace V(n) ⊂ V in which
we know that there’s a solution and then minimise the functional
for all linear combinations:

a1v1(x) + . . .+ anvn(x), ak ∈ R

We have the Ritz matrix

R
(n)
j,k =

∫ 1

0
v′j(x) · v′k(x) dx

= v′j(x) · vk(x)|10 −
∫ 1

0
v′′j (x) · vk(x) dx

= −
∫ 1

0
v′′j (x) · vk(x) dx (homogeneous b.c.)

and the Ritz Vector

r
(n)
k =

∫ 1

0
f(x) · vk(x) dx

to find the a coefficients: R(n) · a⃗ = r⃗(n).

Example

Given Baby Poisson −u′′(x) = f(x) with f(x) = π2 sin(πx) with
u(0) = u(1) = 0. We want to compute the coefficient b in the
ansatz ũ(x) = b · (x− 2x2 + x3).
Solution We compute the (1-dimensional) Ritz matrix R with
v1(x) = x− 2x2 + x3:

R11 =

∫ 1

0
v1

′(x) · v1′(x) dx =

∫ 1

0
(1− 4x+ 3x2)2 dx = 2/15

and the (1-dimensional) Ritz vector with

r1 =

∫ 1

0
f(x) · v1(x) dx =

∫ 1

0
π2 sin(πx) · (x− 2x2 + x3) dx =

2

π

Thus, we get R11 · b = r1 and therefore b = 15/π.



Method of Galerkin 
Weak reformulation: Find a function u(x) (for problem
−u′′(x) = f(x) ⇒ u′′(x) + f(x) = 0) in V such that for all
v(x) ∈ V one has∫ 1

0

(
u′′(x) + f(x)

)
· v(x) dx = 0

and then focus on n carefully chosen functions v1(x), . . . , vn(x)
and find a function ũ(x) in V(n), called ansatz, (that already
satisfy the Dirichlet boundary conditions) such that, when
substituted for the above integral∫ 1

0

(
ũ′′(x) + f(x)

)
vk(x) dx = 0, k = 1, . . . , n

The n equations thus turn into n linear equations∫ 1

0

(
a1 · v′′1 (x) + . . .+ an · v′′n(x) + f(x)

)
· vk(x) dx = 0

for k = 1, . . . , n , giving the Galerkin Matrix

G
(n)
k,j =

∫ 1
0 v′′j (x) · vk(x) dx and the Galerkin vector

g
(n)
k =

∫ 1
0 f(x) · vk(x) dx and the system G(n) · a⃗+ g⃗(n) = 0. We

can also observe that G(n) = −R(n) and g⃗(n) = r⃗(n).
Example
Given The function u(x) on Ω = [0, 1] satisfies Helmholtz’s
equation u′′(x) + 17u(x) = 0 (= 0 important, move to left side)
with Dirichlet conditions u(0) = 0, u(1) = 1. Determine an
approx. function ũ(x) for u(x) with the ansatz
ũ(x) = x+ a1(x− x2) + a2(x2 − x3) (that already satisfies b.c.)
Solution Given the ansatz
ũ(x) = x+ a1(x− x2) + a2(x

2 − x3)

ũ′′(x) = −2a1 + a2(2− 6x)

v1(x)= x− x2

v2(x)= x2 − x3

we receive the linear system∫ 1

0

(
ũ′′(x) + 17ũ(x)

)
· v1(x) dx = 0∫ 1

0

(
ũ′′(x) + 17ũ(x)

)
· v2(x) dx = 0

which gives∫ 1

0

[
−2a1 + a2(2− 6x) + 17(x+ a1(x− x2) + a2(x

2 − x3))
]
· (x− x2) dx = 0∫ 1

0

[
−2a1 + a2(2− 6x) + 17(x+ a1(x− x2) + a2(x

2 − x3))
]
· (x2 − x3) dx = 0

separating by coefficients (e.g. for first equation):∫ 1

0

[
a1(−2 + 17x− 17x2) + a2(2− 6x+ 17x2 − 17x3)

]
· (x− x2) dx = 0

leaves a system in the form a1
∫ 1
0 · · ·+ a2

∫ 1
0 · · ·+

∫ 1
0 · · · = 0.

With the integrals solved, we get:

a1
7

30
+ a2

7

60
+

17

12
= 0

a1
7

60
+ a2

1

85
+

17

12
= 0

and we receive a1 ≈ −8.45 and a2 ≈ 4.76 and thus
ũ(x) = x− 8.45(x− x2) + 4.76(x2 − x3).

Elliptic 

Introduce on problem domain nodal points that divide the
geometry into cells or meshes. Associate to each nodal variable
ak of a nodal point a local function vk from a set of given local
basis functions v1(x), . . . , vn(x) that are continuous and
piecewise differentiable. Thus, the ansatz
ũ(x) = a0v0(x) + a1v1(x) + . . .+ anvn(x) has shape functions vk
that are one on the respective nodal point k. Then, we use shape
functions to represent the PDE on the mesh, e.g. using triangular
functions l1(x) = 1− x and l2(x) = x to obtain local element
matrices

Estep =

[∫ 1
0 l′1(s) · l′1(s) ds

∫ 1
0 l′1(s) · l′2(s) ds∫ 1

0 l′2(s) · l′1(s) ds
∫ 1
0 l′2(s) · l′2(s) ds

]
=

[
1 −1

−1 1

]

that can then be used to construct the mesh matrix M = 1/h · E
using mesh size h. Afterwards, the global Ritz matrix can be
computed, e.g. for a one-dimensional mesh with 4 nodal points
and 2 unknown inner points, yielding 4 base functions
v1, v2, v3, v4:

R4 =


M

(1)
0,0 M

(1)
0,1 0 0

M
(1)
1,0 M

(1)
1,1 +M

(2)
0,0 M

(2)
0,1 0

0 M
(2)
1,0 M

(2)
1,1 +M

(3)
0,0 M

(3)
0,1

0 0 M
(3)
1,0 M

(3)
1,1


The system vector can then be calculated:

r⃗4 =


∫ 1
0 f(x) · v0(x) dx

...∫ 1
0 f(x) · v3(x) dx


Finally, we have obtained the Ritz system: R4 · a⃗ = r⃗4. That
yields the approximation function (as defined by the ansatz):
ũ(x) =

∑3
i=0 ai · vi(x) with a0 and a3 fulfilling the boundary

conditions.
This shape function approach can also be applied to the Ritz
vector. We get f̃(x) = f(a0) · v0(x) + . . .+ f(an)vn(x) and we
approximate rnk =

∫ 1
0 f(x) · vk(x) dx by r̃nk =

∫ 1
0 f̃(x) · vk(x) dx

which essentially is r̃n = Sn · f⃗n where f⃗n is the vector of nodal
values and Sn

k,j =
∫ 1
0 vj(x) · vk(x) dx

Example With Inhomogeneous B.C.
Given A real function u(x) on interval Ω = [0, 1] that satisfies
the differential equation u′′(x) + 8 = 0 and the boundary
conditions u(0) = 1 and u(1) = 2. We want to find an
approximation function ũ(x) using the meshes
[0, 0.5], [0.5, 0.75], [0.75, 1] and linear shape functions.

Discretisation of Geometry

Solution
We get the following mesh matrices:
Mesh 1 (step size = 1/2):

1

h

[
1 −1

−1 1

]
= 1/2−1

[
1 −1

−1 1

]
=

[
2 −2

−2 2

]

Mesh 2 (step size = 1/4):

1

h

[
1 −1

−1 1

]
=

[
4 −4

−4 4

]

Mesh 3 (step size = 1/4):

4

[
1 −1

−1 1

]
=

[
4 −4

−4 4

]

resulting in the global Ritz-Matrix and Ritz-Vector:

R︷ ︸︸ ︷
2 −2 0 0

−2 2 + 4 = 6 −4 0

0 −4 4 + 4 = 8 −4

0 0 −4 4



a⃗︷ ︸︸ ︷
a0

a1

a2

a3

 =

r⃗︷ ︸︸ ︷
∫ 1
0 f(x)v0(x) dx∫ 1
0 f(x)v1(x) dx∫ 1
0 f(x)v2(x) dx∫ 1
0 f(x)v3(x) dx



=


1/2·8
2

= 2 (area of red shape function)
3/4·8
2

= 3 (area of blue shape function)
1/2·8
2

= 2 (area of violet shape function)
1/4·8
2

= 1 (area of green shape function)





to satisfy inhomogeneous boundary conditions, we set a0 and a3
to the boundary condition in the vector a⃗ and eliminate the
corresponding equations, leading to the reduced Ritz system:

[
−2 6 −4 0

0 −4 8 −4

]
1 (b.c.)

a1

a2

2 (b.c.)

 =

[
3

2

]

meaning[
6 −4

−4 8

][
a1

a2

]
+

[
−2

−8

]
=

[
3

2

]
giving a1 = 5/2 and a2 = 5/2.

Example With Homogeneous Boundary Conditions
Given the differential equation u′′(x) + 1 = 0 on Ω = [0, 1] with
homogeneous boundary conditions. We want to approximate
using meshes [0, 0.25], [0.25, 0.75], [0.75, 1].

Discretisation of Geometry
Since we have homogeneous boundary conditions, we can ignore
v0 and v3:

giving ũ(x) = 0v0(x) + a1v1(x) + a2v2(x) + 0v3(x).

Solution
For steps 1, 2 and 3, we get the mesh matrices

M1 = 4 · E,M2 = 2 · E,M3 = 4 · E

using element matrix E of step function and thus the Ritz matrix

R =


4 −4 0 0

−4 6 −2 0

0 −2 6 −1

0 0 −4 4


due to homogeneous boundary conditions, we cancel the first and
last row and columns, resulting in the reduced Ritz system:[

6 −2

−2 6

][
a1

a2

]
=

[
3/8

3/8

]

Example With Funky f(x)
Problem: −u′′(x) = f(x) in Ω = [0, 1] with

f(x) =


8 if x ∈ [0, 1/4),

24 if x ∈ [1/4, 1/2),

40 if x ∈ [1/2, 3/4),

16 if x ∈ [3/4, 1),

and homogeneous b.c. and h = 1/4.

The Ritz vector then is:
For v1: 8 · 1

4
1
2
= 1; 24 · 1

4
1
2
= 3 → 1 + 3 = 4

For v2: 24 · 1
4

1
2
= 3; 40 · 1

4
1
2
= 5 → 3 + 5 = 8

For v3: 40 · 1
4

1
2
= 5; 16 · 1

4
1
2
= 2 → 5 + 2 = 7

p-Strategy 
Using quadratic shape functions
q1(x) = (1− x)(1− 2x), q2(x) = 4x(1− x), q3(x) = −x(1− 2x) as
shape functions

The v-functions for three nodes then look like

with an affine transformation of the x values onto the nodal
points.
We get a new element matrix:

E =
1

3

 7 −8 1

−8 16 −8

1 −8 7


and the associated mesh matrix M = 1/h · E. The Ritz vector
can be computed analogous to the previous methods:

r⃗ =



∫ 1
0 f(x) · v0(x) dx∫ 1
0 f(x) · v1(x) dx

...∫ 1
0 f(x) · vn(x) dx


with the difference that the integral is not as straight forward as
with the triangle function ( except for baby Laplace problem

u′′(x) = 0, since there the Ritz-vector is zero and no integration
needed)

Example
Given −u′′(x) = −2 on Ω = [0, 1] with u(0) = 1 and u(1) = 3.
We want to approximate with ũ and h = 1.

Discretisation of Geometry The resulting curves are exactly

where q1 and q3 are determined by the boundary conditions.

Solution We get the mesh matrix and a resulting system

1

h = 1

1

3

{7 −8 1}
−8 16 −8

{1 −8 7}


1a
3

 =

 ×∫ 1
0 f(x) · q2(x) dx

×


We only need to evaluate the integral of the q2 since the other
curves are determined already. We receive:∫ 1

0
−2 · (4x− 4x2) dx = −

4

3

and since we can eliminate the first and second row, we get:
1

3
(−8 + 16a−24) = −

4

3
⇒ a =

7

4
⇒ ũ(x) = 1 · q1(x) + 7/4 · q2(x) + 3q3(x)



Formulas and Basic Math
Roots
n
√
a · n

√
b =

n
√
a · b

n
√
a

n
√
b
= n

√
a

b

( n
√
a)m =

n
√
am

m
√

n
√
a = m·n√a

Logarithm
logn(a · b) = logn(a) + logn(b)

logn(a÷ b) = logn(a)− logn(b)

logn(ab) = b · logn(a)
Quadratic Fromula

x =
−b±

√
b2 − 4ac

2a
With discriminant b2 − 4ac:

1. b2 − 4ac > 0, there are two distinct real solutions
2. b2 − 4ac = 0, there is one real solution
3. b2 − 4ac < 0, there are no real solutions

Trigonometry
“Normal”

tan θ =
sin θ

cos θ
1÷ cot(x) = tan(x)

sin−θ = − sin θ (cos and tan same)
sin 2θ = 2 sin θ cos θ
cos 2θ = 2 cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

Hyperbolic

sinhx =
ex − e−x

2
=

e2x − 1

2ex

coshx =
ex + e−x

2
=

e2x + 1

2ex

tanhx = sinhx÷ coshx

cothx = coshx÷ sinhx

sech x = 1÷ coshx = 2÷ (ex + e−x)

1 = cosh2(x)− sinh2(x)

−1 = sinh2(x)− cosh2(x)

ex = cosh(x) + sinh(x)
e−x = coshx− sinhx

sinh(x± y) = sinh(x) cosh(y)± cosh(x) sinh(y)
cosh(x± y) = cosh(x) cosh(y)± sinh(x) sinh(y)

sinh(2x) = 2 · sinh(x) cosh(x)√
x2 + 1 = cosh(arcsinh(x))√
x2 − 1 = sinh(arccosh(x))

Derivatives
f(x) df

dx

sinh(x) cosh(x)
cosh(x) sinh(x)

arcsinh(x) 1÷
√
x2 + 1

arccosh(x) 1÷
√
x2 − 1 (1 < x)

tan(x) cos−2(x)

log(x) x−1

Integrals∫
xn dx = 1

n+1
xn+1 + C∫

1
x

dx = ln |x|+ C∫
1

ax+b
dx = 1

a
ln |ax+ b|+ C∫

1
(x+a)2

dx = − 1
x+a

+ C∫
1

1+x2 = tan−1 x+ C∫
ln ax dx = x ln ax− x+ C∫
eax dx = 1

a
eax + C∫

sin(ax) dx = − 1
a

cos(ax) + C∫
sin2(ax) dx = x

2
− sin(2ax)

4a
+ C∫

x cosx dx = cosx+ x sinx+ C∫
sinh(ax) dx = a−1 cosh ax+ C∫
cosh(ax) dx = a−1 sinh ax+ C

Integration Techniques
Integration by Parts∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx

Or, with u = u(x), du = u′(x) dx, v = v(x) and dv = v′(x) dx:∫
u dv = uv −

∫
v du

Substitution∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(u) du

Leibniz Integral Rule

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
=

f(x, b(x)) ·
d

dx
b(x)− f(x, a(x)) ·

d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt

Special case where a(x) = a = const. and b(x) = b = const.:
d

dx

(∫ b

a
f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt

Determinant

det
[
a b

c d

]
= ad− bc

det

a b c

d e f

g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg)

Properties
• det

(
A−1

)
= 1

det(A)

• det(AT ) = det(A)

• det(I) = 1

• det(cA) = cn det(A) (for an n× n matrix)

• det(AB) = det(A) det(B)

• det(A) =
∏n

i=1 λi

Particular Solutions to Simple ODEs
f ′(x) = c

x
f(x) ⇒ f(x) = k1yc

f ′(x) = c · f(x) ⇒ f(x) = k1ecx

f ′′(x) = c · f(x) ⇒ f(x) = k1e
√
cx + k2e−

√
cx

f ′′(x) = −c · f(x) ⇒ f(x) = k1 sin(
√
cx) + k2 cos(

√
cx)

f ′(x) + af(x) = b ⇒ f(x) =
(
f(0)− b

a

)
e−ax + b

a

Harmonic Function
A function is harmonic if it fulfils ∆f = 0. The mean value
property applies:

u(x) =
1

µ(Sr(x))

∫
Sr(x)

u(y) dµ(y)

Polar Coordinates

x = r cosφ
y = r sinφ

r =
√

x2 + y2 (!) when converting x2 + y2, it’s r2!

φ = atan2
( y
x

)
The Laplace operator in polar coordinates is

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂φ2

=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2

Tridiagonal Matrix

M = tridiagn(a, b, c) =



b c

a b c

a b c

. . .
. . .

. . .
a b c

a b


n×n
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