Domain and Boundary

- Domain Ω is an open subset of \mathbb{R}^n (meaning all points are interior points)
- Boundary has to meet conditions:
- Dirichlet boundary conditions: specify values u on $\partial \Omega$: $u(x) = f(x) \ \forall x \in \partial \Omega$
- Neumann boundary conditions: specify derivatives of u on boundary. Only derivatives orthogonal to the boundary give additional information: normal derivative: $\frac{\partial u}{\partial n} = g(x) \ \forall x \in \partial \Omega$

Classification

Linearity

Given an equation involving a function $u(x), x \in \mathbb{R}$ and its derivatives, there is a function F describing the relation:

$$F\begin{pmatrix}x, y, z, p, q, s, t, r, \dots\\ \downarrow \text{ (corresponding to) } \downarrow\\ x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial x \partial y}, \frac{\partial^2 u}{\partial y^2}, \dots \end{pmatrix} = 0$$

(common variable names $p_i \to \frac{\partial u}{\partial x_i}$ and $t_{ij} \to \frac{\partial^2 u}{\partial x_i \partial x_j}$) A PDE is *linear* when function F is linear in

 $u, p_1, \ldots, p_n, t_{11}, \ldots, t_{nn}, \ldots$

A PDE is quasilinear when function F is linear in

 $p_1,\ldots,p_n,t_{11},\ldots,t_{nn},\ldots$

For example, given the heat equation $u_t = \kappa u_{xx}$, F would be $F(p_1, t_{22}) = p_1 - \kappa t_{22}$.

2^{nd} Order PDEs: Symbol Matrix \Box

The symbol matrix of the 2nd order partial differential operator

$$L = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + c(x)$$

is the symmetric matrix

The type of equation can be inferred by the sign of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of the symbol matrix. Calculating the determinant $(\det A = \prod_i \lambda_i)$ and trace $(\operatorname{tr} A = \sum_i \lambda_i)$ reveals information about the signs of its eigenvalues:

Two Variables of PDE

Three Variables of PDE

rank $A<2 \Rightarrow {\rm not}$ classified

0

 $\det A$ and tr A have different sign \Rightarrow hyperbolic

det A = 0, semidefinite (Cholesky decomp.) \Rightarrow parabolic A or -A positive definite (Cholesky) \Rightarrow elliptic

all other cases \Rightarrow hyperbolic

Quasilinear PDEs

Characteristics \Box

The PDE

$$a(x, y, u)\frac{\partial u}{\partial x} + b(x, y, u)\frac{\partial u}{\partial y} = c(x, y, u)$$

can be written in vector notation:

where \vec{n} is a normal vector and \vec{t} is always tangential to the solution surface. Therefore, we can elaborate a solution algorithm:

1. Using the Cauchy initial curve, we formulate

$$\vec{v}(s) = \begin{pmatrix} v_x(s) & v_y(s) & v_z(s) \end{pmatrix}^T$$

which is a point on the initial curve, parameterised by s.

2. Find characteristic curves as solution of the ODEs

$$\frac{d}{dt} \begin{bmatrix} x(t,s) \\ y(t,s) \\ z(t,s) \end{bmatrix} = \begin{bmatrix} a(x(t,s), y(t,s), z(t,s)) \\ b(x(t,s), y(t,s), z(t,s)) \\ c(x(t,s), y(t,s), z(t,s)) \end{bmatrix}$$

with

$$\begin{bmatrix} x(0,s)\\ y(0,s)\\ z(0,s) \end{bmatrix} = \vec{v}(s) = \begin{bmatrix} v_x(s)\\ v_y(s)\\ v_z(s) \end{bmatrix}$$

3. Eliminate the variables t and s and condense solution into a function u(x, y):

$$\left. \begin{array}{l} x = x(t,s) \\ y = y(t,s) \\ u = z(t,s) \end{array} \right\} \ u = u(x,y)$$

Linear PDEs

Separation \square

Conditions, when separation may be successful:

- Homogeneous, linear PDE
- Homogeneous boundary conditions
- Domain must be a cartesian product (i.e. some form of rectangle when in cartesian coordinate system)

if these are given, we can try:

- 1. Assume the structure of the solution to be in the form of some ansatz with separable variables, usually a product $u(x,y) = X(x) \cdot Y(y)$
- 2. Substitute u in PDE with ansatz by variable:

all terms of x =all terms of $y = \lambda$

and solve the ordinary differential equations for X(x) and Y(y).

- 3. Use *homogeneous* boundary conditions to determine admissible values λ_k .
- 4. Solve equations: $X_k(x)$ and $Y_k(y)$ $\Rightarrow u_k(x, y) = X_k(x) \cdot Y_k(y)$ using ansatz.
- 5. Combine solutions: $u(x,y) = \sum_{k \in \mathbb{Z}} (a_k u_k(x,y))$
- 6. Use remaining boundary conditions to determine a_k .

 $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \text{ for a string mounted between } u(0,t) = u(\pi,t) = 0 \\ \text{and is in the rest position at } t = 0: \ u(x,0) = 0 \text{ but has initial} \\ \text{velocity } \frac{\partial u}{\partial t}(0,x) = \sin^3(x) = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x. \text{ We choose the} \\ \text{Ansatz } u(x,t) = X(x)T(t):$

$$\begin{split} X(x)T^{\prime\prime}(t) &= X^{\prime\prime}(x)T(x) \qquad |\div X(x)T(t) \\ T^{\prime\prime}(t) \div T(t) &= X^{\prime\prime}(x) \div X(x) = \mu \end{split}$$

Hence, we receive the ODEs

$$\mu T(t) = T''(t)$$
$$\mu X(x) = X''(x)$$

with $\mu < 0$ to receive oscillating solutions, the ODEs have the solutions

 $X(x) = C \sin(\sqrt{\mu}x) + D \cos(\sqrt{\mu}x)$ $T(t) = A \sin(\sqrt{\mu}t) + B \cos(\sqrt{\mu}t)$

by taking into account the boundary conditions $X(0) = X(\pi) = 0$, yielding C = 1, D = 0 and $\sqrt{n} \in \mathbb{N}$. Therefore, we have the general solution

$$u(x,t) = \sum_{n=1}^{\infty} \sin(nx) \cdot (A_n \sin(nt) + B_n \cos(nt))$$
$$= \sum_{n=1}^{\infty} A_n \sin(nx) \sin(nt) + \sum_{n=1}^{\infty} B_n \sin(nx) \cos(nt)$$

considering the boundary conditions:

$$u(x,0) = 0 = \sum_{n=1}^{\infty} B_n \sin(nx) \underbrace{\cos(0)}_{=1} \Rightarrow B_n = 0$$

and

$$\begin{aligned} \frac{\partial u}{\partial t} &= \sum_{n=1}^{\infty} nA_n \sin(nx) \cos(nt) \\ &\rightarrow \frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} nA_n \sin(nx) = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x \\ &\Rightarrow A_1 = 3/4, A_3 = -1/12, A_n \setminus \{1,3\} = 0 \\ &\Rightarrow u(x,t) = (3/4) \sin(x) \sin(t) - (1/12) \sin(3x) \sin(3t) \end{aligned}$$

Transformation

1. Transform equation in the unbounded variable (e.g. t): derivatives turn into algebraic expressions:

$$\left(\mathcal{L}\frac{\partial u(t,y)}{\partial t}\right)(s) = s\underbrace{(\mathcal{L}f)(s,y)}_{=y_s(y)} - u(0,y)$$

2. Transform y-boundary conditions: gives boundary conditions for

$$u(t,0) = g(t)$$
$$y_s(0) = (\mathcal{L}u(t,0))(s) = (\mathcal{L}g)(s)$$

- 3. Solve PDE with fewer derivatives, ODEs
- 4. Inverse transform

In general, one could use the following transforms:

Domain	Transform
$[-\pi,\pi]$	Fourier Series
[a,b]	Fourier Series
\mathbb{R}	Fourier Transform
\mathbb{R}_+	Laplace Transform
G	Generalised Fourier Theory

Laplace Transform

(Only works on linear equations.) The Laplace transform of a function $f:\mathbb{R}^+\to\mathbb{R}$ is the function

$$\mathcal{L}f: \mathbb{R}^+ \to \mathbb{R}: s \mapsto \mathcal{L}f(s) = \int_0^\infty f(t) e^{-st} dt$$

It is linear:

$$\mathcal{L}(\alpha f + \beta f) = \alpha \mathcal{L}f + \beta \mathcal{L}g$$

Example transformations:

Constant: Exponential: Derivative:

$$f(t) = c f(t) = e^{-ct} f(t) = g^{(n)}(t)$$

$$(\mathcal{L}f)(s) = \frac{c}{s} (\mathcal{L}f)(s) = \frac{1}{c+s} (\mathcal{L}f^{(n)})(s) = -f^{(n-1)}(0) + s \left(\mathcal{L}f^{(n-1)}\right)(s)$$
(removes t-derivatives: $\frac{\partial}{\partial t} \to s$

Fourier Transform

For $f: \mathbb{R} \to \mathbb{C}: x \rightarrowtail f(x)$ the Fourier transform of f is defined as

$$\mathcal{F}f = \hat{f} : \mathbb{R} \to \mathbb{C} : k \mapsto \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

It turns the derivative $\frac{\partial}{\partial x}$ into a multiplication by -ik (second derivatives are reduced to $i^2 = -1$):

 $(\mathcal{F}f^{(n)})(k) = (ik)^n \mathcal{F}f(k)$

The function f can be recovered from \hat{f} by

$$f(x) = (\mathcal{F}^{-1}\hat{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} dk$$

PDEs of Second Order Linear PDEs of second order have the form

$$\sum_{i,j=1}^n a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} u + \sum_{i=1}^n b_i \frac{\partial}{\partial x_i} u + cu = f$$

The equations fall into these categories: *Elliptic* (potential problem), *parabolic* (heat equation, diffusion) and *hyperbolic* (wave equation, linearised supersonic flow).

Splitting the Solution \square

Given a second order linear differential operator L, we have the PDE Lu = f in Ω with u = g on $\partial \Omega$.

- 1. We try to find a particular solution $Lu_p = f$ in Ω , satisfying only the PDE and neglecting boundary conditions
- 2. To solve the original problem, we need an additional summand u_r taking care of boundary values to receive the solution $u_p + u_r$. However, u_r still needs to solve the PDE but due to linearity, this reduces to a homogeneous problem:

$$L(u_p + u_r) = f + Lu_r = f \Rightarrow Lu_r = 0$$
 in Ω

3. Ensure that the boundary conditions are satisfied:

 $u_p + u_r = g \Rightarrow u_r = g - u_p \text{ on } \partial \Omega$

4. If the solution is not unique, we're able to find other solutions using an additional term u_h :

$$\begin{split} L(u_p+u_r+u_h) &= f+Lu_h \ \Rightarrow Lu_h = 0 \text{ in } \Omega \\ u_p+u_r+u_h &= g+u_h \ \Rightarrow u_h = 0 \text{ on } \partial \Omega \end{split}$$

For example, consider the PDE $\nabla^2 u = 4$ in

 $\Omega = \{(x, y) \mid x^2 + y^2 < 1\}$ and u = 0.5x + 0.5 on $\partial\Omega$. This has the particular solution $u_p(x, y) = x^2 + y^2$. To fix boundary conditions, we find a solution u_r of the homogeneous problem with boundary values

$$u_r = 0.5x + 0.5 - u_p(x, y) = 0.5x + 0.5 - 1 = 0.5x - 0.5$$

giving the complete solution $u(x,y) = u_p(x,y) + u_r(x,y) = x^2 + y^2 + 0.5x - 0.5.$

Elliptic PDEs

Maximum Principle for Elliptic Operators

Theorem: If L is an elliptic differential operator on a connected and bounded domain Ω , and u is a solution Lu = 0, then u takes its maximum and minimum on the boundary of Ω .

Uniqueness of Solutions

Theorem: If L is an elliptic differential operator on a connected and bounded domain Ω , then there is at most one solution of Lu = f with boundary conditions $u_{|\partial\Omega} = g$.

Green's Function \square

Heaviside function:
$$\vartheta(x-\xi) = \begin{cases} 1 & \xi \le x \\ 0 & \xi > x \end{cases}$$
 translates the

integral $\int_0^x f(\xi)d\xi$ to $\int_0^1 \vartheta(x-\xi) \cdot f(\xi)d\xi$ for ξ in [0,1]. Given the Laplace equation $\nabla^2 u = f$, we want to find an "inverse" Laplace such that

$$u(x) = \int G(x,\xi)f(\xi) \ d\xi$$

There is a function $G(x,\xi)$ on $\bar\Omega\times\bar\Omega$ called Green's function such that

$$\Delta G(x,\xi) = \delta(x-\xi)$$
 in Ω and $G(x,\xi) = 0$ for $\xi \in \partial \Omega$

the general Poisson problem $\Delta u = f$ in Ω with boundary conditions u = g on $\partial \Omega$ has the solution

$$u(x) = \int_{\Omega} G(x,\xi) f(\xi) \ d\xi + \int_{\partial \Omega} g(\xi) \cdot \operatorname{grad}_{\xi} G(x,\xi) \ dn$$

with n is an outside pointing normal. To construct a particular solution u_p of $\Delta u = f$ on $\Omega \subset \mathbb{R}^n$, there are the following Green's functions (using Dirac- δ function):

$$G(x,\xi) = \begin{cases} \frac{1}{2}|x-\xi| & \text{for } n=1\\ \frac{1}{2\pi}\log|x-\xi| & \text{for } n=2\\ \frac{1}{4\pi}\frac{1}{|x-\xi|} & \text{for } n=3 \end{cases} \Rightarrow \Delta G(x,\xi) = \delta(x-\xi)$$

then $u_p(x) = \int_{\Omega} G(x,\xi) f(\xi) d\xi$.

Hyperbolic PDEs

D'Alembert Solution of Wave Equation

The wave equation can be factorized:

$$0 = \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = \left(\frac{\partial}{\partial t} - a \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - a \frac{\partial}{\partial x}\right) u$$

giving two quasilinear PDEs of which the superposition is a solution:

$$u(t,x) = u_+(x-at) + u_-(x+at)$$

Strip and Characteristics

Consider the hyperbolic equation

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = g - d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + fu = h.$$

A strip then is a curve (x(s), y(s), u(x)) together with the slopes of the tangent planes $p(s) = \frac{\partial u}{\partial x}$ and $q(s) = \frac{\partial u}{\partial y}$.

Consequence: A solu-

tion u(t, x) of the wave equation determines a strip for each value t: $x(s) = s \quad t(s) = t \quad u(s) = u(t, s) \quad p(s) = \frac{\partial u}{\partial x}(s, t) \quad q(s) = \frac{\partial u}{\partial t}(s, t)$ with an initial strip $x(s) = s \quad t(s) = 0 \quad u(s) = f(s) \quad p(s) = f'(s) \quad q(s) = g(s)$

the Cauchy-Problem therefore has to be formulated in terms of the strip.

The second partial derivatives are then determined by the linear system

$$\begin{aligned} a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} &= h(s) = g - dp(s) - eq(s) - fu\\ \dot{x}(s)\frac{\partial^2 u}{\partial x^2} + \dot{y}(s)\frac{\partial^2 u}{\partial x \partial y} &= \dot{p}(s)\\ \dot{x}(s)\frac{\partial^2 u}{\partial x \partial y} + \dot{y}(s)\frac{\partial^2 u}{\partial y^2} &= \dot{q}(s) \end{aligned}$$

The *characteristics* of a differential equation are the curves $t \mapsto (x(t), y(t))$ for which the initial data does not determine the second partial derivatives uniquely and thus, determinant of the linear system is zero

$$\det \begin{bmatrix} a & 2b & c \\ \dot{x}(s) & \dot{y}(s) & 0 \\ 0 & \dot{x}(s) & \dot{y}(s) \end{bmatrix} = 0$$

The determinant is constructible from the symbol matrix A and we thus receive a differential equation for the characteristics:

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \quad \Rightarrow \quad a\dot{y}(s)^2 - 2b\dot{x}(s)\dot{y}(s) + c\dot{x}(s)^2 = 0$$

(note: t is the mapping variable of the curve, if the PDE uses time (e.g. wave) s may be used)

The equation for the characteristics can be simplified for non-constant by dividing by e.g. $\dot{x}(s)^2$. For example:

$$\begin{aligned} x\dot{y}(s)^2 + \dot{x}(s)\dot{y}(s) + \dot{x}(s)^2 &= 0 \quad | \div \dot{x}(s)^2 \\ &= x\frac{\dot{y}(s)^2}{\dot{x}(s)^2} + \frac{\dot{y}(s)}{\dot{x}(s)} + 1 = 0 \quad \left| \dot{y}/\dot{x} = \frac{dy/ds}{dx/ds} = y' \right| \\ &= x(y')^2 + y' + 1 = 0 \end{aligned}$$

which is a quadratic first order differential equation that can be factored into two first order linear differential equations. **Property: Touch** Characteristics touch if the equation

 $a(y')^2 - 2by' + c = 0$

has one solution for y'. The different solutions intersect, if there are multiple solutions for y' $(0 \neq (-2b)^2 - 4ac = -4 \det A > 0)$. \Rightarrow Different solution surfaces touch along characteristic curves. **Property: Influence** We can find the boundaries influencing a certain point P by first finding the characteristic curves that intersect the point by solving the ODEs and setting the constants based on x- and y-values of P and afterwards, calculating using the curves where they start on the boundary. **Summary** Characteristic curves are the curves that are not possible as Cauchy initial curve and describe the evolution of a PDE.

Numerical Methods Discretisation of Operators

$$\begin{split} \frac{\partial g}{\partial x} &\approx \frac{g(x + \Delta x) - g(x)}{\Delta x} \\ \frac{\partial^2 g}{\partial x^2} &\approx \frac{g(x + \Delta x) - 2 \cdot g(x) + g(x - \Delta x)}{\Delta x^2} \\ (\Delta \text{ referring to step size}) \end{split}$$

Discrete Laplace-Operator / Five-Point-Star Operator Setting $h = \Delta x = \Delta y$, then $\nabla^2 u$ is

$$\frac{1}{h^2} \left(\underbrace{u(x+h,y)}_{\text{East}} + \underbrace{u(x,y+h)}_{\text{North}} + \underbrace{u(x-h,y)}_{\text{West}} + \underbrace{u(x,y-h)}_{\text{South}} - \underbrace{4u(x,y)}_{\text{Center}} \right)$$

Finite Difference Method for Elliptic PDEs

In case of a one-dimensional domain:

- 1. Given the differential equation Lu(x) = f(x)
- 2. Discretise domain. E.g. we have $x_k^{(n)} = k \cdot \Delta x$ with $\Delta x = 1/n$.
- 3. Discretise equation using discrete operators

- 4. Replace functions u(x) and f(x) by vectors of nodal values: $u_k^{(n)} = u\left(x_k^{(n)}\right)$ and $f_k^{(n)} = f\left(x_k^{(n)}\right)$
- 5. Solve for $A^{(n)} \cdot \tilde{u}^{(n)} = f^{(n)}$ for inner knots while considering boundary conditions.

One-Dimensional Example

The boundary value problem $u''(x) = 4 \cdot (u(x) - x) = 4u(x) - 4x$, $x \in]0,1[$ with u(0) = 0 and u(1) = 2 should be approximated by function $\tilde{u}(x)$ using FDM with $\Delta x = 1/4$.

The discretised equation therefore is:

$$\frac{u_{k+1} - 2u_k + u_{k-1}}{\Delta x^2} = 4u_k - 4x_k \quad (k = 1, \dots, n-1)$$

giving us the linear system

$$\begin{array}{c} \underbrace{\tilde{u}_{2}-2\tilde{u}_{1}+\tilde{y}_{0}}_{\Delta \pi^{2}} = 0 \\ = 1/16} = 4\tilde{u}_{1} - 4x_{1} \\ \underbrace{\tilde{u}_{3}-2\tilde{u}_{2}+\tilde{u}_{1}}_{\Delta \pi^{2}} = 1/16}_{=1/16} = 4\tilde{u}_{2} - 4x_{2} \\ \underbrace{\tilde{u}_{4}-2\tilde{u}_{3}+\tilde{u}_{2}}_{\Delta \pi^{2}} = 1/16}_{=1/16} = 4\tilde{u}_{3} - 4x_{3} \\ \underbrace{\tilde{u}_{4}-2\tilde{u}_{3}+\tilde{u}_{2}}_{\Delta \pi^{2}} = 1/16}_{\Delta \pi^{2}} = 4\tilde{u}_{3} - 4x_{3} \\ \end{array}$$

resulting in

$$\begin{aligned} -32\tilde{u}_1 + 16\tilde{u}_2 &= 4\tilde{u}_1 - 1 \quad \to -36\tilde{u}_1 + 16\tilde{u}_2 = -1 \\ 16\tilde{u}_1 - 32\tilde{u}_2 + 16\tilde{u}_3 &= 4\tilde{u}_2 - 2 \quad \to 16\tilde{u}_1 - 36\tilde{u}_2 + 16\tilde{u}_3 = -2 \\ 16\tilde{u}_2 - 32\tilde{u}_3 + 16 \cdot 2 &= 4\tilde{u}_3 - 3 \quad \to 16\tilde{u}_2 - 36\tilde{u}_3 = -35 \end{aligned}$$

ultimately giving the equation in matrix form (optional):

 $\begin{bmatrix} -36 & 16 & 0\\ 16 & -36 & 16\\ 0 & 16 & -36 \end{bmatrix} \cdot \begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2\\ \tilde{u}_3 \end{bmatrix} = \begin{bmatrix} -1\\ -2\\ -35 \end{bmatrix}$

giving the approximation vector $\tilde{u} \approx (0.4, 0.83, 1.34)$.

Two-Dimensions Example

We have Poisson's differential equation $-\Delta u(x,y) = f(x,y)$ with $f(x,y) = ((3x+x^2) \cdot y(1-y) + (3y+y^2) \cdot x(1-x)) \cdot e^{x+y}$ on $\Omega = [0,1] \times [0,1]$ with homogeneous boundary conditions. Setting $h = \Delta x = \Delta y = \frac{1}{3}$, we can use the discrete Laplace operator. Discretisation of the geometry yields

and we can define for each inner node an equation:

$$u_{1}: -\frac{\tilde{u}_{2} + \tilde{u}_{3} + y_{1} + y_{1} - 4\tilde{u}_{1}}{1/\hbar^{2}} = f(1/3, 1/3) = f_{1}$$

$$u_{2}: -\frac{0 + \tilde{u}_{4} + \tilde{u}_{1} + 0 - 4\tilde{u}_{2}}{(1/3)^{2}} = f(2/3, 1/3) = f_{2}$$

$$u_{3}: -\frac{\tilde{u}_{4} + 0 + 0 + \tilde{u}_{1} - 4\tilde{u}_{3}}{(1/3)^{2}} = f(1/3, 2/3) = f_{3}$$

$$u_{4}: -\frac{0 + 0 + \tilde{u}_{3} + \tilde{u}_{2} - 4\tilde{u}_{4}}{(1/3)^{2}} = f(2/3, 2/3) = f_{4}$$

giving the linear system:

$$-9 \cdot \begin{bmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \\ \tilde{u}_3 \\ \tilde{u}_4 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$

Finite Differences Method for Parabolic PDEs

Richardson's *Explicit FD Scheme* \square

- 1. Discretise parabolic PDE Lu(...) = f(...) using discrete operators
- 2. *Discretise geometry* by introducing a grid: $x_{j,k} = (j \cdot \Delta x, k \cdot \Delta t)$ with j as the local index and k as the time index where k = 0 is on boundary and $\Delta x = \frac{1}{n}$

$$\Delta t = \frac{r}{n^2}$$
 and $r = \frac{\Delta t}{\Delta x^2}$

- 3. Introduce approximated nodal values $\tilde{u}(x_{i,k}) = \tilde{u}_{i,k}$ and $f_i = f(x_i, 0)$ for the Dirichlet boundary conditions.
- 4. Find a matrix C that satisfies $\tilde{u}_{i}^{(k+1)} = r\tilde{u}_{i-1}^{(k)} + (1-2r)\tilde{u}_{i}^{(k)} + r \cdot \tilde{u}_{i+1}^{(k)}$

for inner grid points for each "step" satisfying boundary conditions: $\tilde{u}_{i}^{(0)} = \tilde{u}_{j,0} = f_{j}$

5. Iteratively generate solution vector using $\tilde{u}^{(k+1)} = C \cdot \tilde{u}^{(k)}$ (i.e. $\tilde{u}^{(k)} = C^k \cdot \vec{f}$)

Stability Analysis

The scheme of Richardson tends asymptotically to zero with k to infinity if for eigenvalues of C, $|\lambda_{\max}| < 1$ is true or $||C^{(n)}|| < 1$ with respect to the spectral norm of C. We only receive a good approximation if the steps are small enough to "catch" enough information on the boundary.

Example Using Heat Equation

Given the heat equation $\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$ for the domain $\Omega = [0,1] \times [0,\infty[$ with the boundary conditions $u(x,0) = e^x$, $u(0,t) = e^t$ and $u(1,t) = e^{1+t}$, we want to find an approximation \tilde{u} for points (1/3, 2/3), (2/3, 2/3) using $\Delta x = 1/3$ and $\Delta t = 1/3$. Discretisation of Heat Equation:

$$\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t} \approx \frac{u(x+\Delta x,t)-2\cdot u(x,t)+u(x-\Delta x,t)}{\Delta x^2}$$
$$u(x,t+\Delta t) \approx u(x,t) + \Delta t \cdot \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{\Delta x^2}$$
$$\tilde{u}_{j,k+1} = u_{j,k} + r \cdot u_{j+1,k} - 2u_{j,k} + u_{j-1,k} \quad \left| \begin{array}{c} r = \frac{\Delta t}{\Delta x^2} \\ \bar{u}_{j,k+1} = r \cdot \tilde{u}_{j-1,k} + (1-2r)\tilde{u}_{j,k} + r \cdot \tilde{u}_{j+1,k} \end{array} \right|$$

Discretisation of Geometry:

Solution Method: With r having a set value, we can write the iterative equation as:

 $\tilde{u}_{i}^{(k+1)} = 3\tilde{u}_{i-1}^{(k)} + 5\tilde{u}_{i}^{(k)} + 3\tilde{u}_{i+1}^{(k)}$ and thus, for k + 1 = 1:

$$\tilde{u}_{1}^{(1)} = 3\tilde{y}_{0}^{(0)} - 5\tilde{y}_{1}^{(0)} + 3\tilde{y}_{2}^{(0)} = 1.8651$$
$$\tilde{u}_{2}^{(1)} = 3\tilde{u}_{1}^{(0)} - 5\tilde{u}_{2}^{(0)} + 3\tilde{u}_{3}^{(0)} = 2.603$$

and
$$k + 1 = 2$$
:

$$\tilde{u}_{1}^{(2)} = 3\tilde{y}_{0}^{(\nu)} - 5\tilde{u}_{1}^{(1)} + 3\tilde{u}_{2}^{(1)} = 2.6702$$
$$\tilde{u}_{2}^{(2)} = 3\tilde{u}_{1}^{(1)} - 5\tilde{u}_{2}^{(1)} + 3\tilde{y}_{3}^{(\nu)} = 3.9614$$

Alternatively, using matrix C:

$$\begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}^{(k+1)} = \underbrace{\begin{bmatrix} -5 & 3 \\ 3 & -5 \end{bmatrix}}_{C} \begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}^{(k)} + \underbrace{3 \begin{bmatrix} e^{\Delta tk} = e^{\frac{k}{3}} \\ e^{1+\Delta tk} = e^{1+\frac{k}{3}} \end{bmatrix}}_{\text{Dirichlet B.C.}}$$

and

$$\begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2 \end{bmatrix}^{(2)} = C^2 \vec{u}^{(0)} + C \cdot 3 \begin{bmatrix} 1\\ e \end{bmatrix} + 3 \begin{bmatrix} e^{1/3}\\ e^{4/3} \end{bmatrix} = \begin{bmatrix} 2.6702\\ 3.9614 \end{bmatrix}$$

Richardson's Implicit Scheme \Box

Uses a backward finite difference for the discretisation in t:

$$\frac{\partial u}{\partial t} \approx \frac{u(x,t) - u(x,t - \Delta t)}{\Delta t}$$

to be able to consider all boundary points. We therefore look for a matrix E to receive a system of linear equations:

$$E \cdot \tilde{u}^{(k+1)} = \tilde{u}^{(k)}$$

and get a solution by inverting (of course not suitable for numerical tasks, only theoretical):

$$\widetilde{u}^{(k+1)} = \left(E^{(n)}\right)^{-1} \cdot \widetilde{u}^{(k)}$$

The method is stable independently of r (absolute stability).

Example

0.05

C

Given the heat equation $\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial r^2}(x,t)$ for the domain $\Omega = [0,2] \times [0,\infty]$ with boundary condition $u(x,0) = \sin\left(\frac{\pi x}{2}\right)$. We want to find $\tilde{u}(x, 0.1)$ using $\Delta x = 0.5$ and $\Delta t = 0.05$.

Discretisation of Heat Equation analogously like in the explicit method:

$$\tilde{u}_{j}^{(k)} = -r \cdot \tilde{u}_{j-1}^{(k+1)} + (1+2 \cdot r) \cdot \tilde{u}_{j}^{(k+1)} - r \cdot \tilde{u}_{j+1}^{(k+1)}$$

Discretisation of Geometry

= 1/5

$$f(x) = \sin\left(\frac{\pi}{2x}\right)$$

Solution For k = 0: $\mathbf{j} = \mathbf{1} : - \mathbf{y}^{\mathbf{f}} \cdot \underbrace{\tilde{\tilde{u}}_{0}}_{\tilde{u}_{1}} + \frac{1}{7/5} \cdot \tilde{u}_{1}^{(1)} - \mathbf{y}^{\mathbf{f}} \cdot \underbrace{\tilde{\tilde{u}}_{2}}_{\tilde{u}_{2}}^{(1)} = f(1/2) = 1/\sqrt{2}$ $\mathbf{j} = \mathbf{2} : -\mathbf{y}^{\star} \cdot \tilde{\tilde{u}}_{1}^{(1)} + \frac{7}{5} \cdot \tilde{u}_{2}^{(1)} - \mathbf{y}^{\star} \cdot \tilde{\tilde{u}}_{3}^{(1)} = f(1) = 1$ $\mathbf{j} = \mathbf{3} : -\mathbf{y}^{\mathbf{4}} \cdot \tilde{\tilde{u}}_{2}^{(1)} + 7/5 \cdot \tilde{u}_{3}^{(1)} - \mathbf{y}^{\mathbf{4}} \cdot \tilde{\tilde{y}}_{4}^{(1)} = f(3/2) = 1/\sqrt{2}$ resulting in the linear system

$$\underbrace{\begin{bmatrix} 7/5 & -1/5 & 0\\ -1/5 & 7/5 & -1/5\\ 0 & -1/5 & 7/5 \end{bmatrix}}_{E} \begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2\\ \tilde{u}_3 \end{bmatrix}^{(1)} = \begin{bmatrix} 1/\sqrt{2}\\ 1\\ 1/\sqrt{2} \end{bmatrix} \Rightarrow \begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2\\ \tilde{u}_3 \end{bmatrix}^{(1)} \cong \begin{bmatrix} 0.633\\ 0.895\\ 0.633 \end{bmatrix}}$$

$$\underbrace{\begin{bmatrix} 7/5 & -1/5 & 0\\ -1/5 & 7/5 & -1/5 \end{bmatrix}}_{E} \begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2 \end{bmatrix}^{(2)} = \begin{bmatrix} 0.633\\ 0.895\\ 0.895 \end{bmatrix} \Rightarrow \begin{bmatrix} \tilde{u}_1\\ \tilde{u}_2 \end{bmatrix}^{(2)} \approx \begin{bmatrix} 0.567\\ 0.801 \end{bmatrix}$$

$$7/5$$
 \tilde{u}_3 0.633 \tilde{u}_3 0.567

Crank-Nicolson Scheme

Averaging the explicit and implicit method of Richardson to improve error term:

$$g'(x) = \frac{1}{2} \cdot \left(\frac{g(x + \Delta x) - g(x)}{\Delta x} + \frac{g(x) - g(x - \Delta x)}{\Delta x} \right) + \mathcal{O}(\Delta x^2)$$

The Crank-Nicolson values at time-level k + 1 are computed by solving the system of linear equations $F^{(n)} \cdot \vec{u}^{(k+1)} = G^{(n)} \cdot \vec{u}^{(k)}$

which can formally be transformed into the linear iteration

$$\vec{\tilde{u}}^{(k+1)} = \left(F^{(n)}\right)^{-1} \cdot G^{(n)} \cdot \vec{\tilde{u}}^{(k)}$$

where the matrices F and G are for the heat equation $u_t = u_{xx}$:

$$\begin{aligned} F^{(n)} &= E^{(n)} + I = \text{tridiag}_{n-1}(-r, 2+2\cdot r, -r) \\ G^{(n)} &= C^{(n)} + I = \text{tridiag}_{n-1}(r, 2-2\cdot r, r) \\ \text{with} \end{aligned}$$

$$E^{(n)} = \operatorname{tridiag}_{n-1}(-r, 1+2 \cdot r, -r) \quad \text{(from implicit)}$$

and

0

$$C^{(n)} = \operatorname{tridiag}_{n-1}(r, 1-2 \cdot r, r) \quad (\text{from explicit})$$

Example

Given the heat equation $\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$ for the domain $\Omega = [0,3] \times [0,\infty[$ and boundary condition $u(x,0) = -25x^2(x-3)$, we want to find $\tilde{u}(x,2)$ using $\Delta x = 1$ and $\Delta t = 0.5$.

Discretisation of Geometry

Solution With $r = \frac{\Delta t}{\Delta x^2} = \frac{1/2}{1} = 0.5$, we receive the matrices $F = \begin{bmatrix} 3 & -0.5 \\ -0.5 & 3 \end{bmatrix}$, $G = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$ and thus $\begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}^{(k+1)} = F^{-1}G \begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}^{(k)} \Rightarrow \begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}^{(4)} = (F^{-1}G)^4 \begin{bmatrix} \tilde{u}_1 = 50 \\ \tilde{u}_2 = 100 \end{bmatrix}^{(0)}$ Finite Differences Method for Hyperbolic PDEs Downwind Scheme

- lace This scheme will in general diverge and frankly is lace.
 - 1. Discretisation of operators of PDE Lu(...) = f(...)
 - 2. Discretise geometry by introducing a grid: $x_{j,k} = (j \cdot \Delta x, k \cdot \Delta t)$ with j as the local index and k as

the time index where k = 0 is on boundary and $\Delta x = \frac{1}{n}$

$$\Delta t = \frac{r}{n}$$
 and $r = \frac{\Delta t}{\Delta x}$ (A in contrast to $r = \Delta t \div \Delta x^2$ for parabolic equations)

3. Find matrix $\tilde{u}_{j,k}$ satisfying discretised equation for inner grid points and $\tilde{u}_{j,0} = f_j$ on boundary

Example Using Advection Equation

Given the advection equation $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0$ on $\Omega = (-\infty, \infty) \times [0, \infty)$ with Dirichlet's boundary condition $u(x, 0) = f(x) = e^x$. We want to get approximation $\tilde{u}(0, 1)$ using $\Delta x = \frac{1}{4}$ and $\Delta t = \frac{1}{4}$.

Discretisation of Operators

$$\frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t} + \frac{\tilde{u}(x+\Delta x,t)-\tilde{u}(x,t)}{\Delta x} = 0 \quad \left| \cdot \Delta t \right|$$
$$(\tilde{u}(x_{j,k+1})-\tilde{u}(x_{j,k})) + r(\tilde{u}(x_{j+1,k})-\tilde{u}(x_{j,k})) = 0 \quad (\Delta t \div \Delta x = 0)$$

 $\Rightarrow \tilde{u}_{j,k+1} = (1+r) \cdot \tilde{u}_{j,k} - r \cdot \tilde{u}_{j+1,k} \quad (= \text{discrete advection eq.})$

Solution Apply discrete advection eq. until $u_0^{(4)}$ is reached.

Upwind Scheme

We use a forward difference in t, just like in the downwind scheme, but a *backward* difference in x.

Example Using Advection Equation

Given the advection equation $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0$ on $\Omega = (-\infty, \infty) \times [0, \infty)$ with Dirichlet's boundary condition u(x, 0) = f(x) being a box function on the interval [-1/2, 1/2]. We want to get approximation $\tilde{u}(x, 3/5)$ using $\Delta x = 2/5$ and $\Delta t = 1/5$. **Discretisation of Operators** The discrete advection equation for the upwind scheme is derived from

$$\frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t} + \frac{\tilde{u}(x,t)-\tilde{u}(x-\Delta x,t)}{\Delta x} = 0$$

and has the iterative form (with $\tilde{u}_j^{(0)} = f_j$ on $\partial\Omega$):

$$\tilde{u}_{i}^{(k+1)} = (1-r) \cdot \tilde{u}_{i}^{(k)} + r \cdot \tilde{u}_{i-1}^{(k)}$$

Discretisation of Geometry

Centred Scheme \Box

Uses a forward difference in t and a centred difference in x.

Example Using Advection Equation

Discretisation of Operators

The discrete advection equation for the centred scheme is derived from the discretised equation:

$$\left| \begin{array}{c} \frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t}+\frac{\tilde{u}(x+\Delta x,t)-\tilde{u}(x-\Delta x,t)}{2\cdot\Delta x}=0 \end{array} \right|$$

and has the iterative form (with $\tilde{u}_i^{(0)} = f_j$ on $\partial \Omega$):

$$\tilde{u}_{j}^{(k+1)} = -\frac{r}{2} \cdot \tilde{u}_{j+1}^{(k)} + \tilde{u}_{j}^{(k)} + \frac{r}{2} \cdot \tilde{u}_{j-1}^{(k)}$$

Solution method is analogous to the upwind and downwind scheme, just considering the left and right predecessor as well.

Lax-Wendroff Scheme \Box

Ideally, a second order numerical scheme has the form $\tilde{u}_{j,k+1} = A \cdot \tilde{u}_{i+1,k} + B \cdot \tilde{u}_{i,k} + C \cdot \tilde{u}_{j-1,k}$. Concretely, for the advection equation, the coefficients would be

$$A = \frac{r^2 - r}{2}, \ B = 1 - r^2, \ C = \frac{r^2 + r}{2} \quad (r = \frac{\Delta t}{\Delta x})$$

Leapfrog for Wave Equation \Box

Given the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x}$ on $\Omega = [0,1] \times [0,\infty)$ with extra conditions

$$u(x,0) = f(x) \quad x \in [0,1]$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \quad x \in [0,1]$$

$$u(0,t) = u(1,t) = 1 \quad t \in [0,\infty)$$

We discretise the geometry again:

$$\begin{split} x_j^{(k)} &= (j \cdot \Delta x, k \cdot \Delta t) \text{ with } \Delta x = \frac{1}{n} \text{ and } \Delta t = \frac{r}{n} \\ &\Rightarrow r = \Delta t \div \Delta x \end{split}$$

Calculate the first time level by

$$\tilde{u}_{j}^{(1)} = f(j \cdot \Delta x) + g(j \cdot \Delta x) \cdot \Delta t + f''(j \cdot \Delta x) \cdot \frac{\Delta t^{2}}{2}$$

afterwards, apply iteratively:

$$\tilde{u}_{j}^{(k+1)} = r^{2} \cdot + \underbrace{\tilde{u}_{j-1}^{(k)}}_{\text{left}} 2 \cdot (1-r^{2}) \cdot + \underbrace{\tilde{u}_{j}^{(k)}}_{\text{center}} r^{2} \cdot \underbrace{\tilde{u}_{j+1}^{(k)}}_{\text{right}} - \underbrace{\tilde{u}_{j}^{(k-1)}}_{\text{center past}}$$

Finite Volume Method for Elliptic PDEs FVM for Poisson Problems (Voronoi)

Divergence Theorem: Given a vector field $\vec{f}(x, y)$. The flux integral over the boundary $\partial \Gamma$ satisfies:

$$\oint_{\partial \Gamma} \vec{f}(x,y) \ d\vec{n} = \int_{\Gamma} \operatorname{div}(\vec{f}(x,y)) \ dA \quad (\vec{n} = \text{outer normal vector})$$

Integrating Poisson's equation $\Delta u=f$ over a non-pathological domain $\Gamma\subset \Omega$ leads to

$$\int_{\Gamma} \Delta u(x,y) \; dx dy = \int_{\Gamma} f(x,y) \; dx dy \quad (ext{f=0 for Laplacian eq.})$$

by the divergence theorem, this implies

$$\oint_{\partial \Gamma} \operatorname{grad}(u(x,y)) \ d\vec{n} = \int_{\Gamma} f(x,y) \ dxdy$$

Approx. by Voronoi cells

for all non-pathological domains $\Gamma \subset \Omega$.

The *left flux integral* will then be discretised along a finite set of normal derivatives for a discrete, polygonal cell:

$$\oint_{\partial \Gamma} \cdots \ d\vec{n} \approx \sum_{j} = \frac{u(P_{j}) - u(P_{i})}{\delta_{i,j}} \cdot \lambda_{i,j}$$

for each normal j of cell i with two cell points P_i, P_j and let $\delta_{i,j}$ be the distance between the two cell points and $\lambda_{i,j}$ the length of the common edge of the two cells.

The *right surface integral* needs to be approximated numerically. Easiest way: take function value at Voronoi point and multiply by cell area (obviously not a very good approximation). For the Lapace equation, it's just zero.

We therefore receive a system of linear equations Av = f for the cell values.

Discretisation of Geometry: Voronoi Cells We can apply the following "algorithm":

- 1. Replace curved boundary by some polygonal approximation
- 2. Choose nVoronoi point
s P_k in Ω and construct for each point its Voronoi cell
- 3. Compute points that are nearest to the corresponding edge of the boundary where a cell has no close neighbour

Example

Given: The function u(x, y) in $\Omega = [0, 1] \times [0, 1]$ satisfies $\Delta u(x, y) = 1$. We want to find approximate values in the four points (1/3, 1/3), (2/3, 1/3), (1/3, 2/3) and (2/3, 2/3)**Discretisation of Geometry:**

iscretisation of Geometry:

Solution

The area of the cell is approximatively

 $\int_{\Gamma_p} f(x,y) \, dxdy \approx f(P) \cdot h^2 \text{ with cell length } h \text{ which is always } \frac{1}{4} \text{ in our case. Therefore, we formulate the linear system:} \\ \text{For } \tilde{u}_1:$

Caution at boundary (\blacktriangle): The dashed line usually has different length there. In the example, it stayed the same due to the equidistant points, but for e.g. 1/4 and 3/4 points, it would be 1/4 on boundary and 1/2 for inter-point distances.

$$\frac{\tilde{u}_2 - \tilde{u}_1}{\frac{1}{3}} \cdot \frac{1}{2} + \frac{\tilde{u}_3 - \tilde{u}_1}{\frac{1}{3}} \frac{1}{2} + \frac{0 - \tilde{u}_1}{\frac{1}{3}} \frac{1}{2} + \frac{0 - \tilde{u}_1}{\frac{1}{3}} \frac{1}{2} = \iiint_{V_1} 1 \ dA = \frac{1}{4}$$
$$\frac{3}{2} (\tilde{u}_2 - \tilde{u}_1 + \tilde{u}_3 - \tilde{u}_1 - \tilde{u}_1 - \tilde{u}_1) = \frac{1}{4}$$
$$\tilde{u}_2 + \tilde{u}_3 - 4\tilde{u}_1 = \frac{2}{12} = \frac{1}{6}$$

Due to symmetry, we receive:

$-4\tilde{u}_1$	$+\tilde{u}_2$	$+\tilde{u}_3$		= 1/6
$ ilde{u}_1$	$-4\tilde{u}_2$		$+\tilde{u}_4$	= 1/6
$ ilde{u}_1$		$-4\tilde{u}_3$	$+\tilde{u}_4$	= 1/6
	\tilde{u}_2	$+\tilde{u}_3$	$-4\tilde{u}_4$	= 1/6

with $\tilde{u} = (-1/12, -1/12, -1/12, -1/12)$

Finite Elements

Variational Problem: Method of Ritz \square

Having a two-point boundary problem -u''(x)=f(x) with v(0)=v(1)=0 on [0,1], we need to find a function that minimises the functional $\phi(v)=\int_0^1 {}^1/{2}\cdot v'(x)^2-f(x)\cdot v(x)\ dx$

Idea of Ritz: Focusing on a vector subspace $\mathbb{V}^{(n)}\subset\mathbb{V}$ in which we know that there's a solution and then minimise the functional for all linear combinations:

 $a_1v_1(x) + \ldots + a_nv_n(x), \quad a_k \in \mathbb{R}$

We have the Ritz matrix

$$\begin{split} R_{j,k}^{(n)} &= \int_0^1 v_j'(x) \cdot v_k'(x) \ dx \\ &= v_j'(x) \cdot v_k(x) |_0^1 - \int_0^1 v_j''(x) \cdot v_k(x) \ dx \\ &= -\int_0^1 v_j''(x) \cdot v_k(x) \ dx \quad \text{(homogeneous b.c.)} \end{split}$$

and the Ritz Vector

$$r_k^{(n)} = \int_0^1 f(x) \cdot v_k(x) \ dx$$

to find the *a* coefficients: $R^{(n)} \cdot \vec{a} = \vec{r}^{(n)}$.

Example

Given Baby Poisson -u''(x) = f(x) with $f(x) = \pi^2 \sin(\pi x)$ with u(0) = u(1) = 0. We want to compute the coefficient *b* in the ansatz $\tilde{u}(x) = b \cdot (x - 2x^2 + x^3)$.

Solution We compute the (1-dimensional) Ritz matrix R with $v1(x) = x - 2x^2 + x^3$:

$$R_{11} = \int_0^1 \mathbf{v_1}'(x) \cdot \mathbf{v_1}'(x) \, dx = \int_0^1 \left(1 - 4x + 3x^2\right)^2 \, dx = \frac{2}{15}$$

and the (1-dimensional) Ritz vector with

$$r_1 = \int_0^1 f(x) \cdot v_1(x) \, dx = \int_0^1 \pi^2 \sin(\pi x) \cdot (x - 2x^2 + x^3) \, dx = \frac{2}{\pi}$$

Thus, we get $R_{11} \cdot b = r_1$ and therefore $b = \frac{15}{\pi}$.

Method of Galerkin \square

Weak reformulation: Find a function u(x) (for problem $-u''(x) = f(x) \Rightarrow u''(x) + f(x) = 0$) in \mathbb{V} such that for all $v(x) \in \mathbb{V}$ one has

$$\int_0^1 (u''(x) + f(x)) \cdot v(x) \, dx = 0$$

and then focus on n carefully chosen functions $v_1(x), \ldots, v_n(x)$ and find a function $\tilde{u}(x)$ in $\mathbb{V}^{(n)}$, called ansatz, (that already satisfy the Dirichlet boundary conditions) such that, when substituted for the above integral

$$\int_0^1 (\tilde{u}''(x) + f(x)) v_k(x) \, dx = 0, \quad k = 1, \dots, n$$

The n equations thus turn into n linear equations

$$\int_0^1 \left(a_1 \cdot v_1''(x) + \ldots + a_n \cdot v_n''(x) + f(x) \right) \cdot v_k(x) \, dx = 0$$

for k = 1, ..., n, giving the Galerkin Matrix

$$\begin{split} G_{k,j}^{(n)} &= \int_0^1 v_j''(x) \cdot v_k(x) \ dx \text{ and the Galerkin vector} \\ g_k^{(n)} &= \int_0^1 f(x) \cdot v_k(x) \ dx \text{ and the system } G^{(n)} \cdot \vec{a} + \vec{g}^{(n)} = 0. \end{split}$$
 We can also observe that $G^{(n)} = -R^{(n)}$ and $\vec{g}^{(n)} = \vec{r}^{(n)}$.

Example

Given The function u(x) on $\Omega = [0, 1]$ satisfies Helmholtz's equation u''(x) + 17u(x) = 0 (= 0 important, move to left side) with Dirichlet conditions u(0) = 0, u(1) = 1. Determine an approx. function $\tilde{u}(x)$ for u(x) with the ansatz $\tilde{u}(x) = x + a_1(x - x^2) + a_2(x^2 - x^3)$ (that already satisfies b.c.) **Solution** Given the ansatz

$$\tilde{u}(x) = x + a_1(x - x^2) + a_2(x^2 - x^3)$$
$$\tilde{u}''(x) = -2a_1 + a_2(2 - 6x)$$
$$v_1(x) = x - x^2$$
$$v_2(x) = x^2 - x^3$$

we receive the linear system

$$\int_{0}^{1} \left(\tilde{u}''(x) + 17\tilde{u}(x) \right) \cdot v_{1}(x) \, dx = 0$$
$$\int_{0}^{1} \left(\tilde{u}''(x) + 17\tilde{u}(x) \right) \cdot v_{2}(x) \, dx = 0$$

which gives

$$\int_{0}^{1} \left[-2a_{1} + a_{2}(2 - 6x) + 17(x + a_{1}(x - x^{2}) + a_{2}(x^{2} - x^{3})) \right] \cdot (x - x^{2}) dx = 0$$

$$\int_{0}^{1} \left[-2a_{1} + a_{2}(2 - 6x) + 17(x + a_{1}(x - x^{2}) + a_{2}(x^{2} - x^{3})) \right] \cdot (x^{2} - x^{3}) dx = 0$$
separating by coefficients (e.g. for first equation):
$$\int_{0}^{1} \left[a_{1}(-2 + 17x - 17x^{2}) + a_{2}(2 - 6x + 17x^{2} - 17x^{3}) \right] \cdot (x - x^{2}) dx = 0$$
leaves a system in the form $a_{1} \int_{0}^{1} \cdots + a_{2} \int_{0}^{1} \cdots + \int_{0}^{1} \cdots = 0.$

leaves a system in the form $a_1 \int_0^1 \cdots + a_2 \int_0^1 \cdots + \int_0^1 \cdots =$ With the integrals solved, we get:

$$a_{1}\frac{7}{30} + a_{2}\frac{7}{60} + \frac{17}{12} = 0$$

$$a_{1}\frac{7}{60} + a_{2}\frac{1}{85} + \frac{17}{12} = 0$$
and we receive $a_{1} \approx -8.45$ and $a_{2} \approx -8.45$

and we receive $a_1 \approx -8.45$ and $a_2 \approx 4.76$ and thus $\tilde{u}(x) = x - 8.45(x - x^2) + 4.76(x^2 - x^3)$.

Elliptic 🖓

Introduce on problem domain nodal points that divide the geometry into cells or meshes. Associate to each nodal variable a_k of a nodal point a local function v_k from a set of given local basis functions $v_1(x), \ldots, v_n(x)$ that are continuous and piecewise differentiable. Thus, the ansatz

 $\tilde{u}(x) = a_0 v_0(x) + a_1 v_1(x) + \ldots + a_n v_n(x)$ has shape functions v_k that are one on the respective nodal point k. Then, we use shape functions to represent the PDE on the mesh, e.g. using triangular functions $l_1(x) = 1 - x$ and $l_2(x) = x$ to obtain *local* element matrices

$$E_{\text{step}} = \begin{bmatrix} \int_0^1 l'_1(s) \cdot l'_1(s) \, ds & \int_0^1 l'_1(s) \cdot l'_2(s) \, ds \\ \int_0^1 l'_2(s) \cdot l'_1(s) \, ds & \int_0^1 l'_2(s) \cdot l'_2(s) \, ds \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

that can then be used to construct the mesh matrix $M = 1/h \cdot E$ using mesh size h. Afterwards, the global Ritz matrix can be computed, e.g. for a one-dimensional mesh with 4 nodal points and 2 unknown inner points, yielding 4 base functions v_1, v_2, v_3, v_4 :

$$R^{4} = \begin{bmatrix} M_{0,0}^{(1)} & M_{0,1}^{(1)} & 0 & 0 \\ M_{1,0}^{(1)} & M_{1,1}^{(1)} + M_{0,0}^{(2)} & M_{0,1}^{(2)} & 0 \\ 0 & M_{1,0}^{(2)} & M_{1,1}^{(2)} + M_{0,0}^{(3)} & M_{0,1}^{(3)} \\ 0 & 0 & M_{1,0}^{(3)} & M_{1,1}^{(3)} \end{bmatrix}$$

The system vector can then be calculated:

$$f = \begin{pmatrix} \int_0^1 f(x) \cdot v_0(x) \, dx \\ \vdots \\ \int_0^1 f(x) \cdot v_3(x) \, dx \end{pmatrix}$$

Finally, we have obtained the Ritz system: $R^4 \cdot \vec{a} = \vec{r^4}$. That yields the approximation function (as defined by the ansatz): $\tilde{u}(x) = \sum_{i=0}^3 a_i \cdot v_i(x)$ with a_0 and a_3 fulfilling the boundary conditions.

This shape function approach can also be applied to the Ritz vector. We get $\tilde{f}(x) = f(a_0) \cdot v_0(x) + \ldots + f(a_n)v_n(x)$ and we approximate $r_k^n = \int_0^1 f(x) \cdot v_k(x) dx$ by $\tilde{r}_k^n = \int_0^1 \tilde{f}(x) \cdot v_k(x) dx$ which essentially is $\tilde{r}^n = S^n \cdot \tilde{f}^n$ where \tilde{f}^n is the vector of nodal values and $S_{k,j}^n = \int_0^1 v_j(x) \cdot v_k(x) dx$

Example With Inhomogeneous B.C.

Given A real function u(x) on interval $\Omega = [0, 1]$ that satisfies the differential equation u''(x) + 8 = 0 and the boundary conditions u(0) = 1 and u(1) = 2. We want to find an approximation function $\tilde{u}(x)$ using the meshes [0, 0.5], [0.5, 0.75], [0.75, 1] and linear shape functions.

Discretisation of Geometry

Solution

We get the following mesh matrices: Mesh 1 (step size = 1/2):

$$\frac{1}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2^{-1}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

Mesh 2 (step size = 1/4):

 $\frac{1}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$ Mesh 3 (step size = 1/4): $4 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$

resulting in the global Ritz-Matrix and Ritz-Vector:

$$\begin{bmatrix}
2 & -2 & 0 & 0 \\
-2 & 2+4 = 6 & -4 & 0 \\
0 & -4 & 4+4 = 8 & -4 \\
0 & 0 & -4 & 4
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3
\end{bmatrix} =
\begin{bmatrix}
\int_0^1 f(x)v_0(x) \, dx \\
\int_0^1 f(x)v_2(x) \, dx \\
\int_0^1 f(x)v_2(x) \, dx \\
\int_0^1 f(x)v_3(x) \, dx
\end{bmatrix}$$

$$=
\begin{bmatrix}
\frac{1/2 \cdot 8}{2} = 2 & (\text{area of red shape function}) \\
\frac{3/4 \cdot 8}{2} = 3 & (\text{area of blue shape function}) \\
\frac{1/2 \cdot 8}{2} = 2 & (\text{area of violet shape function}) \\
\frac{1/4 \cdot 8}{2} = 1 & (\text{area of green shape function})
\end{bmatrix}$$

to satisfy inhomogeneous boundary conditions, we set a_0 and a_3 to the boundary condition in the vector \vec{a} and eliminate the corresponding equations, leading to the reduced Ritz system:

$$\begin{bmatrix} -2 & 6 & -4 & 0 \\ 0 & -4 & 8 & -4 \end{bmatrix} \begin{bmatrix} 1 & (b.c.) \\ a_1 \\ a_2 \\ 2 & (b.c.) \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

meaning

$$\begin{bmatrix} 6 & -4 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} -2 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

giving $a_1 = 5/2$ and $a_2 = 5/2$.

Example With Homogeneous Boundary Conditions

Given the differential equation u''(x) + 1 = 0 on $\Omega = [0, 1]$ with homogeneous boundary conditions. We want to approximate using meshes [0, 0.25], [0.25, 0.75], [0.75, 1].

Discretisation of Geometry

Since we have homogeneous boundary conditions, we can ignore v_0 and v_3 :

giving $\tilde{u}(x) = 0v_0(x) + a_1v_1(x) + a_2v_2(x) + 0v_3(x).$

Solution

For steps 1, 2 and 3, we get the mesh matrices

 $M_1 = 4 \cdot E, M_2 = 2 \cdot E, M_3 = 4 \cdot E$

using element matrix E of step function and thus the Ritz matrix

 $R = \begin{bmatrix} 4 & -4 & 0 & 0 \\ -4 & 6 & -2 & 0 \\ 0 & -2 & 6 & -1 \\ 0 & 0 & -4 & 4 \end{bmatrix}$

due to homogeneous boundary conditions, we cancel the first and last row and columns, resulting in the reduced Ritz system:

$$\begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 3/8 \\ 3/8 \end{bmatrix}$$

Example With Funky f(x)

Problem: -u''(x) = f(x) in $\Omega = [0, 1]$ with

$$f(x) = \begin{cases} 8 & \text{if } x \in [0, 1/4), \\ 24 & \text{if } x \in [1/4, 1/2), \\ 40 & \text{if } x \in [1/2, 3/4), \\ 16 & \text{if } x \in [3/4, 1), \end{cases}$$

and homogeneous b.c. and h = 1/4.

The Ritz vector then is: For $v_1: 8 \cdot \frac{1}{4} \frac{1}{2} = 1; 24 \cdot \frac{1}{4} \frac{1}{2} = 3 \rightarrow 1 + 3 = 4$ For $v_2: 24 \cdot \frac{1}{4} \frac{1}{2} = 3; 40 \cdot \frac{1}{4} \frac{1}{2} = 5 \rightarrow 3 + 5 = 8$ For $v_3: 40 \cdot \frac{1}{4} \frac{1}{2} = 5; 16 \cdot \frac{1}{4} \frac{1}{2} = 2 \rightarrow 5 + 2 = 7$

$\mathbf{p}\text{-}\mathbf{Strategy}\ \Box$

Using quadratic shape functions $q_1(x) = (1-x)(1-2x), q_2(x) = 4x(1-x), q_3(x) = -x(1-2x)$ as shape functions

The v-functions for three nodes then look like

 $v_0(x) = q_1(3x);$ 0; 0. $v_1(x) = q_2(3x);$ 0; 0, $v_2(x)$ $= q_3(3x); q_1(3x-1);$ 0, 0 $q_2(3x-1);$ $v_3(x)$ 0. 0; $q_3(3x-1); q_1(3x-2),$ $v_4(x)$ $v_5(x)$ = 0; 0; $q_2(3x-2)$, 0; $q_3(3x-2)$. $v_6(x)$ = 0;

with an affine transformation of the x values onto the nodal points.

We get a new element matrix:

$$E = \frac{1}{3} \begin{bmatrix} 7 & -8 & 1\\ -8 & 16 & -8\\ 1 & -8 & 7 \end{bmatrix}$$

and the associated mesh matrix $M = 1/h \cdot E$. The Ritz vector can be computed analogous to the previous methods:

$$\vec{r} = \begin{bmatrix} \int_0^1 f(x) \cdot v_0(x) \, dx \\ \int_0^1 f(x) \cdot v_1(x) \, dx \\ \vdots \\ \int_0^1 f(x) \cdot v_n(x) \, dx \end{bmatrix}$$

with the difference that the integral is not as straight forward as with the triangle function (i except for baby Laplace problem

 $u^{\prime\prime}(x)=0,$ since there the Ritz-vector is zero and no integration needed)

Example

Given -u''(x) = -2 on $\Omega = [0, 1]$ with u(0) = 1 and u(1) = 3. We want to approximate with \tilde{u} and h = 1.

Discretisation of Geometry The resulting curves are exactly

where q_1 and q_3 are determined by the boundary conditions.

Solution We get the mesh matrix and a resulting system

$$\frac{1}{h=1}\frac{1}{3}\begin{bmatrix} \{7 & -8 & 1\}\\ -8 & 16 & -8\\ \{1 & -8 & 7\} \end{bmatrix} \begin{bmatrix} 1\\ a\\ 3 \end{bmatrix} = \begin{bmatrix} \times\\ \int_0^1 f(x) \cdot q_2(x) \ dx\\ \times \end{bmatrix}$$

We only need to evaluate the integral of the q_2 since the other curves are determined already. We receive:

$$\int_0^1 -2 \cdot (4x - 4x^2) \, dx = -\frac{4}{3}$$

and since we can eliminate the first and second row, we get:

$$\begin{split} &\frac{1}{3}(-8+16a{-}24) = -\frac{4}{3} \quad \Rightarrow \quad a = \frac{7}{4} \\ &\Rightarrow \tilde{u}(x) = 1 \cdot q_1(x) + \frac{7}{4} \cdot q_2(x) + 3q_3(x) \end{split}$$

Formulas and Basic Math Roots

 $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$ $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$ $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$ $\sqrt[n]{a} = \sqrt[m]{a^m}$

Logarithm

$$\begin{split} \log_n(a \cdot b) &= \log_n(a) + \log_n(b) \\ \log_n(a \div b) &= \log_n(a) - \log_n(b) \\ \log_n(a^b) &= b \cdot \log_n(a) \\ \hline \mathbf{Quadratic Fromula} \\ x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{With discriminant } b^2 - 4ac: \\ 1. \ b^2 - 4ac > 0, \text{ there are two distinct real solutions} \\ 2. \ b^2 - 4ac = 0, \text{ there is one real solution} \\ 3. \ b^2 - 4ac < 0, \text{ there are no real solutions} \end{split}$$

Trigonometry

"Normal" $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $1 \div \cot(x) = \tan(x)$ $\sin -\theta = -\sin \theta \text{ (cos and tan same)}$ $\sin 2\theta = 2\sin \theta \cos \theta$ $\cos 2\theta = 2\cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$ $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

Hyperbolic

 $\sinh x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$ $\cosh x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x}$ $\tanh x = \sinh x \div \cosh x$ $\coth x = \sinh x \div \cosh x$ $\coth x = \cosh x \div \sinh x$ $\operatorname{sech} x = 1 \div \cosh x = 2 \div (e^x + e^{-x})$ $1 = \cosh^2(x) - \sinh^2(x)$ $-1 = \sinh^2(x) - \cosh^2(x)$ $e^x = \cosh(x) + \sinh(x)$ $e^{-x} = \cosh x - \sinh x$ $\sinh(x \pm y) = \sinh(x)\cosh(y) \pm \cosh(x)\sinh(y)$ $\cosh(x \pm y) = \cosh(x)\cosh(y) \pm \sinh(x)\sinh(y)$ $\sinh(2x) = 2 \cdot \sinh(x)\cosh(x)$ $\sqrt{x^2 + 1} = \cosh(\operatorname{arcsinh}(x))$ $\sqrt{x^2 - 1} = \sinh(\operatorname{arccosh}(x))$

Derivatives f(x) $\sinh(x)$ $\cosh(x)$ $\cosh(x)$ $\sinh(x)$ $1 \div \sqrt{x^2 + 1}$ $\operatorname{arcsinh}(x)$ $\operatorname{arccosh}(x)$ $1 \div \sqrt{x^2 - 1} \ (1 < x)$ $\tan(x)$ $\cos^{-2}(x)$ x^{-1} $\log(x)$ Integrals $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ $\int \frac{1}{x} dx = \ln |x| + C$ $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + C$ $\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a} + C$ $\int \frac{1}{1+x^2} = \tan^{-1}x + C$ $\int \ln ax \, dx = x \ln ax - x + C$ $\int e^{ax} dx = \frac{1}{2}e^{ax} + C$ $\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax) + C$ $\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{\sin(2ax)}{4a} + C$ $\int x \cos x \, dx = \cos x + x \sin x + C$ $\int \sinh(ax) dx = a^{-1} \cosh ax + C$ $\int \cosh(ax) dx = a^{-1} \sinh ax + C$ **Integration Techniques Integration by Parts** $\int_{a}^{b} u(x)v'(x) \, dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$ Or, with u = u(x), du = u'(x) dx, v = v(x) and dv = v'(x) dx: $\int u \, dv = uv - \int v \, du$ Substitution $\int_a^b f(g(x)) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$ Leibniz Integral Rule $\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t) dt\right) =$ $f(x,b(x)) \cdot \frac{d}{dx}b(x) - f(x,a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x}f(x,t) dt$ Special case where a(x) = a = const. and b(x) = b = const.: $\frac{d}{dx}\left(\int_{a}^{b} f(x,t) dt\right) = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t) dt$ Determinant $a_{x} = f - b_{x} + d_{x} + d_{x}$ $\det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

 $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$

Properties

- det (A⁻¹) = 1/det(A)
 det(A^T) = det(A)
- $\det(I) = 1$
- $det(cA) = c^n det(A)$ (for an $n \times n$ matrix)
- det(AB) = det(A) det(B)
- det(A) = $\prod_{i=1}^{n} \lambda_i$

Particular Solutions to Simple ODEs

$$\begin{aligned} f'(x) &= \frac{c}{x}f(x) \implies f(x) = k_1 y^c \\ f'(x) &= c \cdot f(x) \implies f(x) = k_1 e^{cx} \\ f''(x) &= c \cdot f(x) \implies f(x) = k_1 e^{\sqrt{c}x} + k_2 e^{-\sqrt{c}x} \\ f''(x) &= -c \cdot f(x) \implies f(x) = k_1 \sin(\sqrt{c}x) + k_2 \cos(\sqrt{c}x) \\ f'(x) &+ af(x) = b \implies f(x) = \left(f(0) - \frac{b}{a}\right) e^{-ax} + \frac{b}{a} \end{aligned}$$

Harmonic Function

A function is harmonic if it fulfils $\Delta f = 0$. The mean value property applies:

$$u(x) = \frac{1}{\mu(S_r(x))} \int_{S_r(x)} u(y) \ d\mu(y)$$

Polar Coordinates

 $\begin{aligned} x &= r\cos\varphi\\ y &= r\sin\varphi \end{aligned}$

$$r = \sqrt{x^2 + y^2}$$
 (!) when converting $x^2 + y^2$, it's r^2 !
 $\varphi = \operatorname{atan2}\left(\frac{y}{x}\right)$

The Laplace operator in polar coordinates is

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}$$
$$= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}$$

Tridiagonal Matrix

$$M = \operatorname{tridiag}_{n}(a, b, c) = \begin{bmatrix} b & c & & & \\ a & b & c & & \\ & a & b & c & \\ & & \ddots & \ddots & \ddots & \\ & & & a & b & c \\ & & & & a & b & c \\ & & & & & a & b \end{bmatrix}_{n \times n}$$