Partial Differential Equations

Domain and Boundary

- Domain Ω is an open subset of \mathbb{R}^{n} (meaning all points are interior points)
- Boundary has to meet conditions:
- Dirichlet boundary conditions: specify values u on $\partial \Omega$: $u(x)=f(x) \forall x \in \partial \Omega$
- Neumann boundary conditions: specify derivatives of u on boundary. Only derivatives orthogonal to the boundary give additional information:
normal derivative: $\frac{\partial u}{\partial n}=g(x) \forall x \in \partial \Omega$

Classification

Linearity

Given an equation involving a function $u(x), x \in \mathbb{R}$ and its derivatives, there is a function F describing the relation:
$F\left(\begin{array}{c}x, y, z, p, q, s, t, r, \ldots \\ \downarrow \text { (corresponding to) } \downarrow \\ x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial x \partial y}, \frac{\partial^{2} u}{\partial y^{2}}, \ldots\end{array}\right)=0$
(common variable names $p_{i} \rightarrow \frac{\partial u}{\partial x_{i}}$ and $t_{i j} \rightarrow \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$)
A PDE is linear when function F is linear in
$u, p_{1}, \ldots, p_{n}, t_{11}, \ldots, t_{n n}, \ldots$
A PDE is quasilinear when function F is linear in $p_{1}, \ldots, p_{n}, t_{11}, \ldots, t_{n n}, \ldots$
For example, given the heat equation $u_{t}=\kappa u_{x x}, F$ would be $F\left(p_{1}, t_{22}\right)=p_{1}-\kappa t_{22}$.
$2^{\text {nd }}$ Order PDEs: Symbol Matrix $~ \varpi$
The symbol matrix of the $2^{\text {nd }}$ order partial differential operator
$L=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}+c(x)$
is the symmetric matrix
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$
For example:

$$
\begin{gathered}
L=a \frac{\partial^{2}}{\partial x^{2}}+x \frac{\partial^{2}}{\partial y^{2}}+3 \frac{\partial^{2}}{\partial z^{2}}+\alpha \frac{\partial^{2}}{\partial x \partial y}-1291 \frac{\partial^{2}}{\partial x \partial z}+47 \frac{\partial^{2}}{\partial z \partial y}-c 19 \frac{\partial}{\partial x}+5 \\
A=\left(\begin{array}{cc}
a & -\frac{1291}{2} \\
\frac{\alpha}{2} \\
\frac{\alpha}{2} \\
-\frac{1291}{2} & \frac{47}{2} \\
\frac{47}{2} \\
x
\end{array}\right) y \\
x
\end{gathered}
$$

The type of equation can be inferred by the sign of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of the symbol matrix. Calculating the determinant $\left(\operatorname{det} A=\prod_{i} \lambda_{i}\right)$ and trace $\left(\operatorname{tr} A=\sum_{i} \lambda_{i}\right)$ reveals information about the signs of its eigenvalues:

Two Variables of PDE

$\operatorname{det} A\left\{\begin{array}{cc}>0 & \text { elliptic (eigenvalues have same sign) } \\ =0 & \text { parabolic (at least one eigenvalue is zero) } \\ <0 & \text { hyperbolic (eigenvalues have opposite sign) }\end{array}\right.$

Three Variables of PDE

rank $A<2 \Rightarrow$ not classified $\operatorname{det} A$ and $\operatorname{tr} A$ have different sign \Rightarrow hyperbolic
$\operatorname{det} A=0$, semidefinite (Cholesky decomp.) \Rightarrow parabolic
A or $-A$ positive definite (Cholesky) \Rightarrow elliptic

$$
\text { all other cases } \Rightarrow \text { hyperbolic }
$$

Quasilinear PDEs

Characteristics \downarrow

The PDE
$a(x, y, u) \frac{\partial u}{\partial x}+b(x, y, u) \frac{\partial u}{\partial y}=c(x, y, u)$ can be written in vector notation:
$\underbrace{\left(\begin{array}{l}a(x, y, u) \\ b(x, y, u) \\ c(x, y, u)\end{array}\right)}_{\vec{t}} \cdot \underbrace{\left(\begin{array}{c}\frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ -1\end{array}\right)}_{\vec{n}}=0$

where \vec{n} is a normal vector and
\bar{t} is always tangential to the solution
surface. Therefore, we can elaborate a
solution algorithm:

1. Using the Cauchy initial curve, we formulate

$$
\vec{v}(s)=\left(\begin{array}{lll}
v_{x}(s) & v_{y}(s) & v_{z}(s)
\end{array}\right)^{T}
$$

which is a point on the initial curve, parameterised by s
2. Find characteristic curves as solution of the ODEs

$$
\frac{d}{d t}\left[\begin{array}{l}
x(t, s) \\
y(t, s) \\
z(t, s)
\end{array}\right]=\left[\begin{array}{l}
a(x(t, s), y(t, s), z(t, s)) \\
b(x(t, s), y(t, s), z(t, s)) \\
c(x(t, s), y(t, s), z(t, s))
\end{array}\right]
$$

with

$$
\left[\begin{array}{l}
x(0, s) \\
y(0, s) \\
z(0, s)
\end{array}\right]=\vec{v}(s)=\left[\begin{array}{l}
v_{x}(s) \\
v_{y}(s) \\
v_{z}(s)
\end{array}\right]
$$

3. Eliminate the variables t and s and condense solution into a function $u(x, y)$:

$$
\left.\begin{array}{l}
x=x(t, s) \\
y=y(t, s) \\
u=z(t, s)
\end{array}\right\} u=u(x, y)
$$

Linear PDEs

Separation \downarrow

Conditions, when separation may be successful

- Homogeneous, linear PDE
- Homogeneous boundary conditions
- Domain must be a cartesian product (i.e. some form of rectangle when in cartesian coordinate system)
if these are given, we can try:

1. Assume the structure of the solution to be in the form of some ansatz with separable variables, usually a product $u(x, y)=X(x) \cdot Y(y)$
2. Substitute u in PDE with ansatz by variable:
all terms of $x=$ all terms of $y=\lambda$
and solve the ordinary differential equations for $X(x)$ and $Y(y)$.
3. Use homogeneous boundary conditions to determine admissible values λ_{k}.
4. Solve equations: $X_{k}(x)$ and $Y_{k}(y)$ $\Rightarrow u_{k}(x, y)=X_{k}(x) \cdot Y_{k}(y)$ using ansatz.
5. Combine solutions: $u(x, y)=\sum_{k \in \mathbb{Z}}\left(a_{k} u_{k}(x, y)\right)$
6. Use remaining boundary conditions to determine a_{k}.

Separation Example Given the wave equation
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ for a string mounted between $u(0, t)=u(\pi, t)=0$ and is in the rest position at $t=0: u(x, 0)=0$ but has initial velocity $\frac{\partial u}{\partial t}(0, x)=\sin ^{3}(x)=\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x$. We choose the Ansatz $u(x, t)=X(x) T(t)$:

$$
\begin{array}{cc}
X(x) T^{\prime \prime}(t)=X^{\prime \prime}(x) T(x) & \mid \div X(x) T(t) \\
T^{\prime \prime}(t) \div T(t)=X^{\prime \prime}(x) \div X(x)=\mu &
\end{array}
$$

Hence, we receive the ODEs

$$
\mu T(t)=T^{\prime \prime}(t)
$$

$\mu X(x)=X^{\prime \prime}(x)$
with $\mu<0$ to receive oscillating solutions, the ODEs have the solutions

$$
\begin{aligned}
X(x) & =C \sin (\sqrt{\mu} x)+D \cos (\sqrt{\mu} x) \\
T(t) & =A \sin (\sqrt{\mu} t)+B \cos (\sqrt{\mu} t)
\end{aligned}
$$

by taking into account the boundary conditions
$X(0)=X(\pi)=0$, yielding $C=1, D=0$ and $\sqrt{n} \in \mathbb{N}$. Therefore, we have the general solution

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} \sin (n x) \cdot\left(A_{n} \sin (n t)+B_{n} \cos (n t)\right) \\
& =\sum_{n=1}^{\infty} A_{n} \sin (n x) \sin (n t)+\sum_{n=1}^{\infty} B_{n} \sin (n x) \cos (n t)
\end{aligned}
$$

considering the boundary conditions:

$$
u(x, 0)=0=\sum_{n=1}^{\infty} B_{n} \sin (n x) \underbrace{\cos (0)}_{=1} \Rightarrow B_{n}=0
$$

and

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\sum_{n=1}^{\infty} n A_{n} \sin (n x) \cos (n t) \\
& \rightarrow \frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} n A_{n} \sin (n x)=\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x \\
& \Rightarrow A_{1}=3 / 4, A_{3}=-1 / 12, A_{n \backslash\{1,3\}}=0 \\
& \Rightarrow u(x, t)=(3 / 4) \sin (x) \sin (t)-(1 / 12) \sin (3 x) \sin (3 t)
\end{aligned}
$$

Transformation \downarrow

1. Transform equation in the unbounded variable (e.g. t) derivatives turn into algebraic expressions:

$$
\left(\mathcal{L} \frac{\partial u(t, y)}{\partial t}\right)(s)=s \underbrace{(\mathcal{L} f)(s, y)}_{=y_{s}(y)}-u(0, y)
$$

2. Transform y-boundary conditions: gives boundary conditions for

$$
u(t, 0)=g(t)
$$

$$
y_{s}(0)=(\mathcal{L} u(t, 0))(s)=(\mathcal{L} g)(s)
$$

3. Solve PDE with fewer derivatives, ODEs
4. Inverse transform

In general, one could use the following transforms: Domain Transform
$[-\pi, \pi] \quad$ Fourier Series
[a,b] Fourier Series
\mathbb{R} Fourier Transform
$\mathbb{R}_{+} \quad$ Laplace Transform
$G \quad$ Generalised Fourier Theory

Laplace Transform

(Only works on linear equations.) The Laplace transform of a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is the function
$\mathcal{L} f: \mathbb{R}^{+} \rightarrow \mathbb{R}: s \mapsto \mathcal{L} f(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$
It is linear:
$\mathcal{L}(\alpha f+\beta f)=\alpha \mathcal{L} f+\beta \mathcal{L} f$
Example transformations:

Constant:	Exponential:	Derivative:
$f(t)=c$	$f(t)=e^{-c t}$	$f(t)=g^{(n)}(t)$
$(\mathcal{L} f)(s)=\frac{c}{s}$	$(\mathcal{L} f)(s)=\frac{1}{c+s}$	$\left(\mathcal{L} f^{(n)}\right)(s)=$
		$-f^{(n-1)}(0)+s\left(\mathcal{L} f^{(n-1)}\right)(s)$
		$\left(\right.$ removes t-derivatives: $\left.\frac{\partial}{\partial t} \rightarrow s\right)$

Fourier Transform

For $f: \mathbb{R} \rightarrow \mathbb{C}: x \mapsto f(x)$ the Fourier transform of f is defined as
$\mathcal{F} f=\hat{f}: \mathbb{R} \rightarrow \mathbb{C}: k \mapsto \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x$
It turns the derivative $\frac{\partial}{\partial x}$ into a multiplication by $-i k$ (second derivatives are reduced to $i^{2}=-1$):
$\left(\mathcal{F} f^{(n)}\right)(k)=(i k)^{n} \mathcal{F} f(k)$
The function f can be recovered from \hat{f} by
$f(x)=\left(\mathcal{F}^{-1} \hat{f}\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k$

PDEs of Second Order

Linear PDEs of second order have the form

$$
\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} u+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} u+c u=f
$$

The equations fall into these categories: Elliptic (potential problem), parabolic (heat equation, diffusion) and hyperbolic (wave equation, linearised supersonic flow).

Splitting the Solution \downarrow

Given a second order linear differential operator L, we have the PDE $L u=f$ in Ω with $u=g$ on $\partial \Omega$.

1. We try to find a particular solution $L u_{p}=f$ in Ω, satisfying only the PDE and neglecting boundary conditions
2. To solve the original problem, we need an additional summand u_{r} taking care of boundary values to receive the solution $u_{p}+u_{r}$. However, u_{r} still needs to solve the PDE but due to linearity, this reduces to a homogeneous problem:
$L\left(u_{p}+u_{r}\right)=f+L u_{r}=f \Rightarrow L u_{r}=0$ in Ω
3. Ensure that the boundary conditions are satisfied:

$$
u_{p}+u_{r}=g \Rightarrow u_{r}=g-u_{p} \text { on } \partial \Omega
$$

4. If the solution is not unique, we're able to find other solutions using an additional term u_{h} :

$$
\begin{array}{r}
L\left(u_{p}+u_{r}+u_{h}\right)=f+L u_{h} \Rightarrow L u_{h}=0 \text { in } \Omega \\
u_{p}+u_{r}+u_{h}=g+u_{h} \Rightarrow u_{h}=0 \text { on } \partial \Omega
\end{array}
$$

For example, consider the PDE $\nabla^{2} u=4$ in
$\Omega=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ and $u=0.5 x+0.5$ on $\partial \Omega$. This has the particular solution $u_{p}(x, y)=x^{2}+y^{2}$. To fix boundary conditions, we find a solution u_{r} of the homogeneous problem with boundary values
$u_{r}=0.5 x+0.5-u_{p}(x, y)=0.5 x+0.5-\underbrace{1}_{\text {on } \partial \Omega}=0.5 x-0.5$
giving the complete solution
$u(x, y)=u_{p}(x, y)+u_{r}(x, y)=x^{2}+y^{2}+0.5 x-0.5$

Elliptic PDEs

Maximum Principle for Elliptic Operators

Theorem: If L is an elliptic differential operator on a connected and bounded domain Ω, and u is a solution $L u=0$, then u takes its maximum and minimum on the boundary of Ω.

Uniqueness of Solutions

Theorem: If L is an elliptic differential operator on a connected and bounded domain Ω, then there is at most one solution of $L u=f$ with boundary conditions $u_{\mid \partial \Omega}=g$.

Green's Function \downarrow

Heaviside function: $\vartheta(x-\xi)=\left\{\begin{array}{ll}1 & \xi \leq x \\ 0 & \xi>x\end{array}\right.$ translates the
integral $\int_{0}^{x} f(\xi) d \xi$ to $\int_{0}^{1} \vartheta(x-\xi) \cdot f(\xi) d \xi$ for ξ in $[0,1]$.
Given the Laplace equation $\nabla^{2} u=f$, we want to find an
"inverse" Laplace such that
$u(x)=\int G(x, \xi) f(\xi) d \xi$
There is a function $G(x, \xi)$ on $\bar{\Omega} \times \bar{\Omega}$ called Green's function such that
$\Delta G(x, \xi)=\delta(x-\xi) \quad$ in Ω and $G(x, \xi)=0$ for $\xi \in \partial \Omega$
the general Poisson problem $\Delta u=f$ in Ω with boundary conditions $u=g$ on $\partial \Omega$ has the solution
$u(x)=\int_{\Omega} G(x, \xi) f(\xi) d \xi+\int_{\partial \Omega} g(\xi) \cdot \operatorname{grad}_{\xi} G(x, \xi) d n$
with n is an outside pointing normal. To construct a particular solution u_{p} of $\Delta u=f$ on $\Omega \subset \mathbb{R}^{n}$, there are the following Green's functions (using Dirac- δ function):
$G(x, \xi)=\left\{\begin{array}{cl}\frac{1}{2}|x-\xi| & \text { for } n=1 \\ \frac{1}{2 \pi} \log |x-\xi| & \text { for } n=2 \\ \frac{1}{4 \pi} \frac{1}{|x-\xi|} & \text { for } n=3\end{array}\right\} \Rightarrow \Delta G(x, \xi)=\delta(x-\xi)$
then $u_{p}(x)=\int_{\Omega} G(x, \xi) f(\xi) d \xi$.

Hyperbolic PDEs

D'Alembert Solution of Wave Equation

The wave equation can be factorized:
$0=\frac{\partial^{2} u}{\partial t^{2}}-a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{\partial}{\partial t}-a \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-a \frac{\partial}{\partial x}\right) u$
giving two quasilinear PDEs of which the superposition is a solution:
$u(t, x)=u_{+}(x-a t)+u_{-}(x+a t)$

Strip and Characteristics

Consider the hyperbolic equation
$a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=g-d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+f u=h$.
A strip then is a curve $(x(s), y(s), u(x))$ together with the slopes of the tangent planes $p(s)=\frac{\partial u}{\partial x}$ and $q(s)=\frac{\partial u}{\partial y}$.
Consequence: A solu-
tion $u(t, x)$ of the wave equation determines a strip for each value t : $x(s)=s \quad t(s)=t \quad u(s)=u(t, s) \quad p(s)=\frac{\partial u}{\partial x}(s, t) \quad q(s)=\frac{\partial u}{\partial t}(s, t)$ with an initial strip
$x(s)=s \quad t(s)=0 \quad u(s)=f(s) \quad p(s)=f^{\prime}(s) \quad q(s)=g(s)$
the Cauchy-Problem therefore has to be formulated in terms of the strip.
The second partial derivatives are then determined by the linear system

$$
\begin{aligned}
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}} & =h(s)=g-d p(s)-e q(s)-f u \\
\dot{x}(s) \frac{\partial^{2} u}{\partial x^{2}}+\dot{y}(s) \frac{\partial^{2} u}{\partial x \partial y} & =\dot{p}(s) \\
\dot{x}(s) \frac{\partial^{2} u}{\partial x \partial y}+\dot{y}(s) \frac{\partial^{2} u}{\partial y^{2}} & =\dot{q}(s)
\end{aligned}
$$

The characteristics of a differential equation are the curves $t \mapsto(x(t), y(t))$ for which the initial data does not determine the second partial derivatives uniquely and thus, determinant of the linear system is zero
$\operatorname{det}\left[\begin{array}{ccc}a & 2 b & c \\ \dot{x}(s) & \dot{y}(s) & 0 \\ 0 & \dot{x}(s) & \dot{y}(s)\end{array}\right]=0$

The determinant is constructible from the symbol matrix A and we thus receive a differential equation for the characteristics:
$A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \Rightarrow a \dot{y}(s)^{2}-2 b \dot{x}(s) \dot{y}(s)+c \dot{x}(s)^{2}=0$
(note: t is the mapping variable of the curve, if the PDE uses time (e.g. wave) s may be used)
The equation for the characteristics can be simplified for non-constant by dividing by e.g. $\dot{x}(s)^{2}$. For example:
$x \dot{y}(s)^{2}+\dot{x}(s) \dot{y}(s)+\dot{x}(s)^{2}=0 \quad \mid \div \dot{x}(s)^{2}$
$=x \frac{\dot{y}(s)^{2}}{\dot{x}(s)^{2}}+\frac{\dot{y}(s)}{\dot{x}(s)}+1=0 \quad \dot{y} / \dot{x}=\frac{d y / d s}{d x / d s}=y^{\prime}$
$=x\left(y^{\prime}\right)^{2}+y^{\prime}+1=0$
which is a quadratic first order differential equation that can be factored into two first order linear differential equations.
Property: Touch Characteristics touch if the equation
$a\left(y^{\prime}\right)^{2}-2 b y^{\prime}+c=0$
has one solution for y^{\prime}. The different solutions intersect, if there are multiple solutions for $y^{\prime}\left(0 \neq(-2 b)^{2}-4 a c=-4 \operatorname{det} A>0\right)$. \Rightarrow Different solution surfaces touch along characteristic curves. Property: Influence We can find the boundaries influencing a certain point P by first finding the characteristic curves that intersect the point by solving the ODEs and setting the constants based on x- and y-values of P and afterwards, calculating using the curves where they start on the boundary.
Summary Characteristic curves are the curves that are not possible as Cauchy initial curve and describe the evolution of a PDE.

Numerical Methods

Discretisation of Operators
$\frac{\partial g}{\partial x} \approx \frac{g(x+\Delta x)-g(x)}{\Delta x}$
$\frac{\partial^{2} g}{\partial x^{2}} \approx \frac{g(x+\Delta x)-2 \cdot g(x)+g(x-\Delta x)}{\Delta x^{2}}$
(Δ referring to step size)
Discrete Laplace-Operator / Five-Point-Star Operator Setting $h=\Delta x=\Delta y$, then $\nabla^{2} u$ is
$\frac{1}{h^{2}}(\underbrace{u(x+h, y)}_{\text {East }}+\underbrace{u(x, y+h)}_{\text {North }}+\underbrace{u(x-h, y)}_{\text {West }}+\underbrace{u(x, y-h)}_{\text {South }}-\underbrace{4 u(x, y)}_{\text {Center }})$

Finite Difference Method for Elliptic PDEs

In case of a one-dimensional domain:

1. Given the differential equation $L u(x)=f(x)$
2. Discretise domain. E.g. we have $x_{k}^{(n)}=k \cdot \Delta x$ with $\Delta x=1 / n$.
3. Discretise equation using discrete operators
4. Replace functions $u(x)$ and $f(x)$ by vectors of nodal values: $u_{k}^{(n)}=u\left(x_{k}^{(n)}\right)$ and $f_{k}^{(n)}=f\left(x_{k}^{(n)}\right)$
5. Solve for $A^{(n)} \cdot \tilde{u}^{(n)}=f^{(n)}$ for inner knots while considering boundary conditions.

One-Dimensional Example

The boundary value problem
$\left.u^{\prime \prime}(x)=4 \cdot(u(x)-x)=4 u(x)-4 x, \quad x \in\right] 0,1[$ with $u(0)=0$ and $u(1)=2$ should be approximated by function $\tilde{u}(x)$ using FDM with $\Delta x=1 / 4$.

The discretised equation therefore is:
$\frac{u_{k+1}-2 u_{k}+u_{k-1}}{\Delta x^{2}}=4 u_{k}-4 x_{k} \quad(k=1, \ldots, n-1)$

giving us the linear system

resulting in

$$
\begin{aligned}
-32 \tilde{u}_{1}+16 \tilde{u}_{2}=4 \tilde{u}_{1}-1 & \rightarrow-36 \tilde{u}_{1}+16 \tilde{u}_{2}=-1 \\
16 \tilde{u}_{1}-32 \tilde{u}_{2}+16 \tilde{u}_{3}=4 \tilde{u}_{2}-2 & \rightarrow 16 \tilde{u}_{1}-36 \tilde{u}_{2}+16 \tilde{u}_{3}=-2 \\
16 \tilde{u}_{2}-32 \tilde{u}_{3}+16 \cdot 2=4 \tilde{u}_{3}-3 & \rightarrow 16 \tilde{u}_{2}-36 \tilde{u}_{3}=-35
\end{aligned}
$$

ultimately giving the equation in matrix form (optional):

$$
\left[\begin{array}{ccc}
-36 & 16 & 0 \\
16 & -36 & 16 \\
0 & 16 & -36
\end{array}\right] \cdot\left[\begin{array}{l}
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
-35
\end{array}\right]
$$

giving the approximation vector $\tilde{u} \approx(0.4,0.83,1.34)$.

Two－Dimensions Example

We have Poisson＇s differential equation $-\Delta u(x, y)=f(x, y)$ with $f(x, y)=\left(\left(3 x+x^{2}\right) \cdot y(1-y)+\left(3 y+y^{2}\right) \cdot x(1-x)\right) \cdot e^{x+y}$ on $\Omega=[0,1] \times[0,1]$ with homogeneous boundary conditions．Setting $h=\Delta x=\Delta y=\frac{1}{3}$ ，we can use the discrete Laplace operator． Discretisation of the geometry yields

and we can define for each inner node an equation：

$$
\begin{aligned}
& u_{1}:-\frac{\tilde{u}_{2}+\tilde{u}_{3}+y_{1}+x_{1}^{0}-4 \tilde{u}_{1}}{1 / h^{2}}=f(1 / 3,1 / 3)=f_{1} \\
& u_{2}:-\frac{0+\tilde{u}_{4}+\tilde{u}_{1}+0-4 \tilde{u}_{2}}{(1 / 3)^{2}}=f(2 / 3,1 / 3)=f_{2} \\
& u_{3}:-\frac{\tilde{u}_{4}+0+0+\tilde{u}_{1}-4 \tilde{u}_{3}}{(1 / 3)^{2}}=f(1 / 3,2 / 3)=f_{3} \\
& u_{4}:-\frac{0+0+\tilde{u}_{3}+\tilde{u}_{2}-4 \tilde{u}_{4}}{(1 / 3)^{2}}=f(2 / 3,2 / 3)=f_{4}
\end{aligned}
$$

giving the linear system：

$$
-9 \cdot\left[\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
1 & -4 & 0 & 1 \\
1 & 0 & -4 & 1 \\
0 & 1 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3} \\
\tilde{u}_{4}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right]
$$

Finite Differences Method for Parabolic PDEs

Richardson＇s Explicit FD Scheme \downarrow
1．Discretise parabolic PDE $L u(\ldots)=f(\ldots)$ using discrete operators
2．Discretise geometry by introducing a grid： $x_{j, k}=(j \cdot \Delta x, k \cdot \Delta t)$ with j as the local index and k as the time index where $k=0$ is on boundary and $\Delta x=\frac{1}{n}$

$$
\Delta t=\frac{r}{n^{2}} \quad \text { and } \quad r=\frac{\Delta t}{\Delta x^{2}}
$$

3．Introduce approximated nodal values $\tilde{u}\left(x_{j, k}\right)=\tilde{u}_{j, k}$ and $f_{j}=f\left(x_{j}, 0\right)$ for the Dirichlet boundary conditions．
4．Find a matrix C that satisfies

$$
\tilde{u}_{j}^{(k+1)}=r \tilde{u}_{j-1}^{(k)}+(1-2 r) \tilde{u}_{j}^{(k)}+r \cdot \tilde{u}_{j+1}^{(k)}
$$

for inner grid points for each＂step＂satisfying boundary conditions：$\tilde{u}_{j}^{(0)}=\tilde{u}_{j, 0}=f_{j}$

5．Iteratively generate solution vector using $\tilde{u}^{(k+1)}=C \cdot \tilde{u}^{(k)}$ （i．e．$\left.\tilde{u}^{(k)}=C^{k} \cdot \vec{f}\right)$

Stability Analysis

The scheme of Richardson tends asymptotically
to zero with k to infinity if for eigenvalues of $C,\left|\lambda_{\max }\right|<1$ is true or $\left\|C^{(n)}\right\|<1$ with respect to the spectral norm of C．
We only receive a good
approximation if the steps are small enough
to＂catch＂enough information on the boundary．

Example Using Heat Equation

Given the heat equation $\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)$ for the domain $\Omega=[0,1] \times\left[0, \infty\left[\right.\right.$ with the boundary conditions $u(x, 0)=e^{x}$ ， $u(0, t)=e^{t}$ and $u(1, t)=e^{1+t}$ ，we want to find an approximation \tilde{u} for points $(1 / 3,2 / 3),(2 / 3,2 / 3)$ using $\Delta x=1 / 3$ and $\Delta t=1 / 3$ ．

Discretisation of Heat Equation

$\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} \approx \frac{u(x+\Delta x, t)-2 \cdot u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}$
$u(x, t+\Delta t) \approx u(x, t)+\Delta t \cdot \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}$
$\tilde{u}_{j, k+1}=u_{j, k}+r \cdot u_{j+1, k}-2 u_{j, k}+u_{j-1, k} \quad \left\lvert\, r=\frac{\Delta t}{\Delta x^{2}}\right.$
$\tilde{u}_{j, k+1}=r \cdot \tilde{u}_{j-1, k}+(1-2 r) \tilde{u}_{j, k}+r \cdot \tilde{u}_{j+1, k}$
Discretisation of Geometry：

Solution Method：With r having a set value，we can write the iterative equation as：
$\tilde{u}_{j}^{(k+1)}=3 \tilde{u}_{j-1}^{(k)}+5 \tilde{u}_{j}^{(k)}+3 \tilde{u}_{j+1}^{(k)}$
and thus，for $\mathbf{k}+\mathbf{1}=\mathbf{1}$ ：
$\tilde{u}_{1}^{(1)}=3 \tilde{y}_{0}^{(0)^{1}}-5 \tilde{y}_{1}^{(0)}+3 \tilde{y}_{2}^{(0)}=1.8651$
$\tilde{u}_{2}^{(1)}=3 \tilde{u}_{1}^{(0)}-5 \tilde{u}_{2}^{(0)}+3 \tilde{u}_{3}^{(0)}=2.603$
and $\mathbf{k}+\mathbf{1}=\mathbf{2}$ ：
$\tilde{u}_{1}^{(2)}=3 \tilde{u}_{0}^{(1)^{-1}}-5 \tilde{u}_{1}^{(1)}+3 \tilde{u}_{2}^{(1)}=2.6702$
$\tilde{u}_{2}^{(2)}=3 \tilde{u}_{1}^{(1)}-5 \tilde{u}_{2}^{(1)}+3 \tilde{y}_{3}^{(1)^{-}}=3.9614$

Alternatively，using matrix C
$\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(k+1)}=\underbrace{\left[\begin{array}{cc}-5 & 3 \\ 3 & -5\end{array}\right]}_{C}\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(k)}+\underbrace{3\left[\begin{array}{c}e^{\Delta t k}=e^{\frac{k}{3}} \\ e^{1+\Delta t k}=e^{1+\frac{k}{3}}\end{array}\right]}_{\text {Dirichlet B．C．}}$
and
$\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(2)}=C^{2} \overrightarrow{\tilde{u}}^{(0)}+C \cdot 3\left[\begin{array}{l}1 \\ e\end{array}\right]+3\left[\begin{array}{l}e^{1 / 3} \\ e^{4 / 3}\end{array}\right]=\left[\begin{array}{l}2.6702 \\ 3.9614\end{array}\right]$
Richardson＇s Implicit Scheme \downarrow
Uses a backward finite difference for the discretisation in t ： $\frac{\partial u}{\partial t} \approx \frac{u(x, t)-u(x, t-\Delta t)}{\Delta t}$
to be able to consider all boundary points．We therefore look for a matrix E to receive a system of linear equations：
$E \cdot \tilde{u}^{(k+1)}=\tilde{u}^{(k)}$
and get a solution by inverting（of course not suitable for numerical tasks，only theoretical）：
$\tilde{u}^{(k+1)}=\left(E^{(n)}\right)^{-1} \cdot \tilde{u}^{(k)}$
The method is stable independently of r（absolute stability）．

Example

Given the heat equation $\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)$ for the domain $\Omega=[0,2] \times\left[0, \infty\left[\right.\right.$ with boundary condition $u(x, 0)=\sin \left(\frac{\pi x}{2}\right)$ ． We want to find $\tilde{u}(x, 0.1)$ using $\Delta x=0.5$ and $\Delta t=0.05$ ．

Discretisation of Heat Equation analogously like in the explicit method：
$\tilde{u}_{j}^{(k)}=-r \cdot \tilde{u}_{j-1}^{(k+1)}+(1+2 \cdot r) \cdot \tilde{u}_{j}^{(k+1)}-r \cdot \tilde{u}_{j+1}^{(k+1)}$
Discretisation of Geometry

$$
0.05 \underbrace{t}_{0} \begin{array}{cccccc}
\hat{f}_{0}^{(2)} & \tilde{u}_{2}^{(2)} & \tilde{u}_{3}^{(2)} & 0 & 0 & 0 \\
0 & \tilde{u}_{1}^{(1)} & \tilde{u}_{2}^{(1)} & \tilde{u}_{3}^{(1)} & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 & 1 / \sqrt{2} & 0 \\
0 & 1 / 2 & 1 & 3 / 2 & 2 j
\end{array} \quad r=\frac{1 / 20}{(1 / 2)^{2}}=1 / 5
$$

$$
f(x)=\sin (\pi / 2 x)
$$

Solution

For $k=0$ ：
$\mathbf{j}=\mathbf{1}:-y^{4} \cdot \tilde{u}_{0}^{\frac{1}{5}}(1)+7 / 5 \cdot \tilde{u}_{1}^{(1)}-y^{4} \cdot \tilde{u}_{2}^{\frac{1}{5}}(1)=f(1 / 2)=1 / \sqrt{2}$
$\mathbf{j}=\mathbf{2}:-ク^{4} \cdot \tilde{u}_{1}^{\frac{1}{5}}+7 / 5 \cdot \tilde{u}_{2}^{(1)}-\not ク^{\prime} \cdot \tilde{u}_{3}^{\frac{1}{5}}(1)=f(1)=1$
$\mathbf{j}=\mathbf{3}:-ク^{\prime} \cdot \tilde{u}_{2}^{\frac{1}{5}}(1)+7 / 5 \cdot \tilde{u}_{3}^{(1)}-\not{ }^{\prime} \cdot \tilde{u}_{4}^{\frac{1}{5}}(1)^{(1)}=f(3 / 2)=1 / \sqrt{2}$
resulting in the linear system
$\underbrace{\left[\begin{array}{ccc}7 / 5 & -1 / 5 & 0 \\ -1 / 5 & 7 / 5 & -1 / 5 \\ 0 & -1 / 5 & 7 / 5\end{array}\right]}_{E}\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2} \\ \tilde{u}_{3}\end{array}\right]^{(1)}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 \\ 1 / \sqrt{2}\end{array}\right] \Rightarrow\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2} \\ \tilde{u}_{3}\end{array}\right]^{(1)} \approx\left[\begin{array}{l}0.633 \\ 0.895 \\ 0.633\end{array}\right]$
$\overbrace{\left[\begin{array}{ccc}7 / 5 & -1 / 5 & 0 \\ -1 / 5 & 7 / 5 & -1 / 5 \\ 0 & -1 / 5 & 7 / 5\end{array}\right]}^{\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2} \\ \tilde{u}_{3}\end{array}\right]^{(2)}=\left[\begin{array}{l}0.633 \\ 0.895 \\ 0.633\end{array}\right] \Rightarrow\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2} \\ \tilde{u}_{3}\end{array}\right]^{(2)} \approx\left[\begin{array}{l}0.567 \\ 0.801 \\ 0.567\end{array}\right]}$

Crank-Nicolson Scheme \downarrow
Averaging the explicit and implicit method of Richardson to improve error term:
$g^{\prime}(x)=\frac{1}{2} \cdot\left(\frac{g(x+\Delta x)-g(x)}{\Delta x}+\frac{g(x)-g(x-\Delta x)}{\Delta x}\right)+\mathcal{O}\left(\Delta x^{2}\right)$ The Crank-Nicolson values at time-level $k+1$ are computed by solving the system of linear equations
$F^{(n)} \cdot \overrightarrow{\tilde{u}}^{(k+1)}=G^{(n)} \cdot \overrightarrow{\vec{u}}^{(k)}$
which can formally be transformed into the linear iteration
$\overrightarrow{\tilde{u}}^{(k+1)}=\left(F^{(n)}\right)^{-1} \cdot G^{(n)} \cdot \overrightarrow{\tilde{u}}^{(k)}$
where the matrices F and G are for the heat equation $u_{t}=u_{x x}$: $F^{(n)}=E^{(n)}+I=\operatorname{tridiag}_{n-1}(-r, 2+2 \cdot r,-r)$
$G^{(n)}=C^{(n)}+I=\operatorname{tridiag}_{n-1}(r, 2-2 \cdot r, r)$
with
$E^{(n)}=\operatorname{tridiag}_{n-1}(-r, 1+2 \cdot r,-r) \quad$ (from implicit)
and
$C^{(n)}=\operatorname{tridiag}_{n-1}(r, 1-2 \cdot r, r) \quad$ (from explicit)

Example

Given the heat equation $\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)$ for the domain $\Omega=[0,3] \times[0, \infty[$ and boundary condition
$u(x, 0)=-25 x^{2}(x-3)$, we want to find $\tilde{u}(x, 2)$ using $\Delta x=1$ and $\Delta t=0.5$.
Discretisation of Geometry

Solution
Solution
With $r=\frac{\Delta t}{\Delta x^{2}}=\frac{1 / 2}{1}=0.5$, we receive the matrices
$F=\left[\begin{array}{cc}3 & -0.5 \\ -0.5 & 3\end{array}\right], G=\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right]$
and thus
$\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(k+1)}=F^{-1} G\left[\begin{array}{l}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(k)} \Rightarrow\left[\begin{array}{c}\tilde{u}_{1} \\ \tilde{u}_{2}\end{array}\right]^{(4)}=\left(F^{-1} G\right)^{4}\left[\begin{array}{c}\tilde{u}_{1}=50 \\ \tilde{u}_{2}=100\end{array}\right]^{(0)}$

Finite Differences Method for

Hyperbolic PDEs

Downwind Scheme \downarrow

A This scheme will in general diverge and frankly is 自

1. Discretisation of operators of PDE $L u(\ldots)=f(\ldots)$
2. Discretise geometry by introducing a grid: $x_{j, k}=(j \cdot \Delta x, k \cdot \Delta t)$ with j as the local index and k as the time index where $k=0$ is on boundary and $\Delta x=\frac{1}{n}$ $\Delta t=\frac{r}{n}$ and $r=\frac{\Delta t}{\Delta x}$ (\triangle in contrast to $r=\Delta t \div \Delta x^{2}$ for parabolic equations)
3. Find matrix $\tilde{u}_{j, k}$ satisfying discretised equation for inner grid points and $\tilde{u}_{j, 0}=f_{j}$ on boundary

Example Using Advection Equation

Given the advection equation $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}=0$ on
$\Omega=(-\infty, \infty) \times[0, \infty)$ with Dirichlet's boundary condition $u(x, 0)=f(x)=e^{x}$. We want to get approximation $\tilde{u}(0,1)$ using $\Delta x=1 / 4$ and $\Delta t=1 / 4$.

Discretisation of Operators

$\left.\frac{\tilde{u}(x, t+\Delta t)-\tilde{u}(x, t)}{\Delta t}+\frac{\tilde{u}(x+\Delta x, t)-\tilde{u}(x, t)}{\Delta x}=0 \quad \right\rvert\, \cdot \Delta t$
$\left(\tilde{u}\left(x_{j, k+1}\right)-\tilde{u}\left(x_{j, k}\right)\right)+r\left(\tilde{u}\left(x_{j+1, k}\right)-\tilde{u}\left(x_{j, k}\right)\right)=0 \quad(\Delta t \div \Delta x=r$
$\Rightarrow \tilde{u}_{j, k+1}=(1+r) \cdot \tilde{u}_{j, k}-r \cdot \tilde{u}_{j+1, k} \quad(=$ discrete advection eq. $)$
Discretisation of Geometry

$r=\frac{\Delta t}{\Delta x}=\frac{1 / 4}{1 / 4}=1$

Solution Apply discrete advection eq. until $u_{0}^{(4)}$ is reached.
Upwind Scheme \downarrow
We use a forward difference in t, just like in the downwind scheme, but a backward difference in x.

Example Using Advection Equation

Given the advection equation $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}=0$ on
$\Omega=(-\infty, \infty) \times[0, \infty)$ with Dirichlet's boundary condition
$u(x, 0)=f(x)$ being a box function on the interval $[-1 / 2,1 / 2]$. We want to get approximation $\tilde{u}(x, 3 / 5)$ using $\Delta x=2 / 5$ and $\Delta t=1 / 5$. Discretisation of Operators

The discrete advection equation for the upwind scheme is derived from
$\frac{\tilde{u}(x, t+\Delta t)-\tilde{u}(x, t)}{\Delta t}+\frac{\tilde{u}(x, t)-\tilde{u}(x-\Delta x, t)}{\Delta x}=0$
and has the iterative form (with $\tilde{u}_{j}^{(0)}=f_{j}$ on $\partial \Omega$):
$\tilde{u}_{j}^{(k+1)}=(1-r) \cdot \tilde{u}_{j}^{(k)}+r \cdot \tilde{u}_{j-1}^{(k)}$
Discretisation of Geometry

Solution Using $\tilde{u}_{j}^{(k+1)}=1 / 2 \cdot \tilde{u}_{j}^{(k)}+1 / 2 \cdot \tilde{u}_{j-1}^{(k)}$
Centred Scheme \downarrow
Uses a forward difference in t and a centred difference in x.

Example Using Advection Equation

Discretisation of Operators

The discrete advection equation for the centred scheme is derived from the discretised equation:
$\frac{\tilde{u}(x, t+\Delta t)-\tilde{u}(x, t)}{\Delta t}+\frac{\tilde{u}(x+\Delta x, t)-\tilde{u}(x-\Delta x, t)}{2 \cdot \Delta x}=0$
and has the iterative form (with $\tilde{u}_{j}^{(0)}=f_{j}$ on $\partial \Omega$):

$$
\tilde{u}_{j}^{(k+1)}=-\frac{r}{2} \cdot \tilde{u}_{j+1}^{(k)}+\tilde{u}_{j}^{(k)}+\frac{r}{2} \cdot \tilde{u}_{j-1}^{(k)}
$$

Solution method is analogous to the upwind and downwind scheme, just considering the left and right predecessor as well.

Lax-Wendroff Scheme \downarrow

Ideally, a second order numerical scheme has the form
$\tilde{u}_{j, k+1}=A \cdot \tilde{u}_{i+1, k}+B \cdot \tilde{u}_{i, k}+C \cdot \tilde{u}_{j-1, k}$. Concretely, for the advection equation, the coefficients would be
$A=\frac{r^{2}-r}{2}, \quad B=1-r^{2}, \quad C=\frac{r^{2}+r}{2} \quad\left(r=\frac{\Delta t}{\Delta x}\right)$

Leapfrog for Wave Equation \downarrow

Given the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x}$ on $\Omega=[0,1] \times[0, \infty)$ with extra conditions

$$
\begin{aligned}
u(x, 0) & =f(x) \quad x \in[0,1] \\
\frac{\partial u}{\partial t}(x, 0) & =g(x) \quad x \in[0,1] \\
u(0, t) & =u(1, t)=1 \quad t \in[0, \infty)
\end{aligned}
$$

We discretise the geometry again:
$x_{j}^{(k)}=(j \cdot \Delta x, k \cdot \Delta t)$ with $\Delta x=\frac{1}{n}$ and $\Delta t=\frac{r}{n}$

$$
\Rightarrow r=\Delta t \div \Delta x
$$

Calculate the first time level by
$\tilde{u}_{j}^{(1)}=f(j \cdot \Delta x)+g(j \cdot \Delta x) \cdot \Delta t+f^{\prime \prime}(j \cdot \Delta x) \cdot \frac{\Delta t^{2}}{2}$
afterwards, apply iteratively

$$
\tilde{u}_{j}^{(k+1)}=r^{2} \cdot+\underbrace{\tilde{u}_{j-1}^{(k)}}_{\text {left }} 2 \cdot\left(1-r^{2}\right) \cdot+\underbrace{\tilde{u}_{j}^{(k)}}_{\text {center }} r^{2} \cdot \underbrace{\tilde{u}_{j+1}^{(k)}}_{\text {right }}-\underbrace{\tilde{u}_{j}^{(k-1)}}_{\text {center past }}
$$

Finite Volume Method for Elliptic PDEs

FVM for Poisson Problems (Voronoi) \downarrow
Divergence Theorem: Given a vector field $\vec{f}(x, y)$. The flux integral over the boundary $\partial \Gamma$ satisfies:

$$
\oint_{\partial \Gamma} \vec{f}(x, y) d \vec{n}=\int_{\Gamma} \operatorname{div}(\vec{f}(x, y)) d A \quad(\vec{n}=\text { outer normal vector })
$$

Integrating Poisson's equation $\Delta u=f$ over a non-pathological domain $\Gamma \subset \Omega$ leads to
$\int_{\Gamma} \Delta u(x, y) d x d y=\int_{\Gamma} f(x, y) d x d y \quad$ ($\mathrm{f}=0$ for Laplacian eq.)
by the divergence theorem, this implies

$$
\underbrace{\oint_{\partial \Gamma} \operatorname{grad}(u(x, y)) d \vec{n}}=\int_{\Gamma} f(x, y) d x d y
$$

Approx. by Voronoi cells
for all non-pathological domains $\Gamma \subset \Omega$.
The left flux integral will then be discretised along a finite set of normal derivatives for a discrete, polygonal cell:
$\oint_{\partial \Gamma} \cdots d \vec{n} \approx \sum_{j}=\frac{u\left(P_{j}\right)-u\left(P_{i}\right)}{\delta_{i, j}} \cdot \lambda_{i, j}$
for each normal j of cell i with two cell points P_{i}, P_{j} and let $\delta_{i, j}$ be the distance between the two cell points and $\lambda_{i, j}$ the length of the common edge of the two cells.
The right surface integral needs to be approximated numerically. Easiest way: take function value at Voronoi point and multiply by cell area (obviously not a very good approximation). For the Lapace equation, it's just zero.
We therefore receive a system of linear equations $A v=f$ for the cell values.

Discretisation of Geometry: Voronoi Cells We can apply the following "algorithm":

1. Replace curved boundary by some polygonal approximation
2. Choose n Voronoi points P_{k} in Ω and construct for each point its Voronoi cell
3. Compute points that are nearest to the corresponding edge of the boundary where a cell has no close neighbour

Example

Given: The function $u(x, y)$ in $\Omega=[0,1] \times[0,1]$ satisfies $\Delta u(x, y)=1$. We want to find approximate values in the four points $(1 / 3,1 / 3),(2 / 3,1 / 3),(1 / 3,2 / 3)$ and $(2 / 3,2 / 3)$

Discretisation of Geometry:

Solution

The area of the cell is approximatively
$\int_{\Gamma_{p}} f(x, y) d x d y \approx f(P) \cdot h^{2}$ with cell length h which is always $1 / 4$ in our case. Therefore, we formulate the linear system: For \tilde{u}_{1} :
Caution at boundary (\mathbf{A}): The dashed line usually has different length there. In the example, it stayed the same due to the equidistant points, but for e.g. $1 / 4$ and $3 / 4$ points, it would be $1 / 4$ on boundary and $1 / 2$ for inter-point distances.

Due to symmetry, we receive:
$\left|\begin{array}{lllll}-4 \tilde{u}_{1} & +\tilde{u}_{2} & +\tilde{u}_{3} & & =1 / 6 \\ \tilde{u}_{1} & -4 \tilde{u}_{2} & & +\tilde{u}_{4} & =1 / 6 \\ \tilde{u}_{1} & & -4 \tilde{u}_{3} & +\tilde{u}_{4} & =1 / 6 \\ & \tilde{u}_{2} & +\tilde{u}_{3} & -4 \tilde{u}_{4} & =1 / 6\end{array}\right|$
with $\tilde{u}=(-1 / 12,-1 / 12,-1 / 12,-1 / 12)$

Finite Elements

Variational Problem: Method of Ritz \downarrow

Having a two-point boundary problem $-u^{\prime \prime}(x)=f(x)$ with $v(0)=v(1)=0$ on $[0,1]$, we need to find a function that minimises the functional $\phi(v)=\int_{0}^{1} 1 / 2 \cdot v^{\prime}(x)^{2}-f(x) \cdot v(x) d x$

Idea of Ritz: Focusing on a vector subspace $\mathbb{V}^{(n)} \subset \mathbb{V}$ in which we know that there's a solution and then minimise the functional for all linear combinations:
$a_{1} v_{1}(x)+\ldots+a_{n} v_{n}(x), \quad a_{k} \in \mathbb{R}$

We have the Ritz matrix

$$
\begin{aligned}
R_{j, k}^{(n)} & =\int_{0}^{1} v_{j}^{\prime}(x) \cdot v_{k}^{\prime}(x) d x \\
& =\left.v_{j}^{\prime}(x) \cdot v_{k}(x)\right|_{0} ^{1}-\int_{0}^{1} v_{j}^{\prime \prime}(x) \cdot v_{k}(x) d x \\
& =-\int_{0}^{1} v_{j}^{\prime \prime}(x) \cdot v_{k}(x) d x \quad \text { (homogeneous b.c.) }
\end{aligned}
$$

and the Ritz Vector
$r_{k}^{(n)}=\int_{0}^{1} f(x) \cdot v_{k}(x) d x$
to find the a coefficients: $R^{(n)} \cdot \vec{a}=\vec{r}^{(n)}$.

Example

Given Baby Poisson $-u^{\prime \prime}(x)=f(x)$ with $f(x)=\pi^{2} \sin (\pi x)$ with $u(0)=u(1)=0$. We want to compute the coefficient b in the ansatz $\tilde{u}(x)=b \cdot\left(x-2 x^{2}+x^{3}\right)$.
Solution We compute the (1-dimensional) Ritz matrix R with $v 1(x)=x-2 x^{2}+x^{3}$:
$R_{11}=\int_{0}^{1} v_{1}{ }^{\prime}(x) \cdot v_{1}{ }^{\prime}(x) d x=\int_{0}^{1}\left(1-4 x+3 x^{2}\right)^{2} d x=2 / 15$
and the (1-dimensional) Ritz vector with
$r_{1}=\int_{0}^{1} f(x) \cdot v_{1}(x) d x=\int_{0}^{1} \pi^{2} \sin (\pi x) \cdot\left(x-2 x^{2}+x^{3}\right) d x=\frac{2}{\pi}$
Thus, we get $R_{11} \cdot b=r_{1}$ and therefore $b=15 / \pi$.

Method of Galerkin \downarrow

Weak reformulation: Find a function $u(x)$ (for problem $\left.-u^{\prime \prime}(x)=f(x) \Rightarrow u^{\prime \prime}(x)+f(x)=0\right)$ in \mathbb{V} such that for all $v(x) \in \mathbb{V}$ one has
$\int_{0}^{1}\left(u^{\prime \prime}(x)+f(x)\right) \cdot v(x) d x=0$
and then focus on n carefully chosen functions $v_{1}(x), \ldots, v_{n}(x)$ and find a function $\tilde{u}(x)$ in $\mathbb{V}^{(n)}$, called ansatz, (that already satisfy the Dirichlet boundary conditions) such that, when substituted for the above integral
$\int_{0}^{1}\left(\tilde{u}^{\prime \prime}(x)+f(x)\right) v_{k}(x) d x=0, \quad k=1, \ldots, n$
The n equations thus turn into n linear equations
$\int_{0}^{1}\left(a_{1} \cdot v_{1}^{\prime \prime}(x)+\ldots+a_{n} \cdot v_{n}^{\prime \prime}(x)+f(x)\right) \cdot v_{k}(x) d x=0$
for $k=1, \ldots, n$, giving the Galerkin Matrix
$G_{k, j}^{(n)}=\int_{0}^{1} v_{j}^{\prime \prime}(x) \cdot v_{k}(x) d x$ and the Galerkin vector
$g_{k}^{(n)}=\int_{0}^{1} f(x) \cdot v_{k}(x) d x$ and the system $G^{(n)} \cdot \vec{a}+\vec{g}^{(n)}=0$. We can also observe that $G^{(n)}=-R^{(n)}$ and $\vec{g}^{(n)}=\vec{r}^{(n)}$.

Example

Given The function $u(x)$ on $\Omega=[0,1]$ satisfies Helmholtz's equation $u^{\prime \prime}(x)+17 u(x)=0(=0$ important, move to left side $)$ with Dirichlet conditions $u(0)=0, u(1)=1$. Determine an approx. function $\tilde{u}(x)$ for $u(x)$ with the ansatz
$\tilde{u}(x)=x+a_{1}\left(x-x^{2}\right)+a_{2}\left(x^{2}-x^{3}\right)$ (that already satisfies b.c.) Solution Given the ansatz
$\tilde{u}(x)=x+a_{1}\left(x-x^{2}\right)+a_{2}\left(x^{2}-x^{3}\right)$
$\tilde{u}^{\prime \prime}(x)=-2 a_{1}+a_{2}(2-6 x)$
$v_{1}(x)=x-x^{2}$
$v_{2}(x)=x^{2}-x^{3}$
we receive the linear system
$\int_{0}^{1}\left(\tilde{u}^{\prime \prime}(x)+17 \tilde{u}(x)\right) \cdot v_{1}(x) d x=0$
$\int_{0}^{1}\left(\tilde{u}^{\prime \prime}(x)+17 \tilde{u}(x)\right) \cdot v_{2}(x) d x=0$
which gives
$\int_{0}^{1}\left[-2 a_{1}+a_{2}(2-6 x)+17\left(x+a_{1}\left(x-x^{2}\right)+a_{2}\left(x^{2}-x^{3}\right)\right)\right] \cdot\left(x-x^{2}\right) d x=0$
$\int_{0}^{1}\left[-2 a_{1}+a_{2}(2-6 x)+17\left(x+a_{1}\left(x-x^{2}\right)+a_{2}\left(x^{2}-x^{3}\right)\right)\right] \cdot\left(x^{2}-x^{3}\right) d x=0$
separating by coefficients (e.g. for first equation):
$\int_{0}^{1}\left[a_{1}\left(-2+17 x-17 x^{2}\right)+a 2\left(2-6 x+17 x^{2}-17 x^{3}\right)\right] \cdot\left(x-x^{2}\right) d x=0$
leaves a system in the form $a_{1} \int_{0}^{1} \cdots+a_{2} \int_{0}^{1} \cdots+\int_{0}^{1} \cdots=0$.
With the integrals solved, we get:
$a_{1} \frac{7}{30}+a_{2} \frac{7}{60}+\frac{17}{12}=0$
$a_{1} \frac{7}{60}+a_{2} \frac{1}{85}+\frac{17}{12}=0$
and we receive $a_{1} \approx-8.45$ and $a_{2} \approx 4.76$ and thus $\tilde{u}(x)=x-8.45\left(x-x^{2}\right)+4.76\left(x^{2}-x^{3}\right)$.

Elliptic \downarrow

Introduce on problem domain nodal points that divide the geometry into cells or meshes. Associate to each nodal variable a_{k} of a nodal point a local function v_{k} from a set of given local basis functions $v_{1}(x), \ldots, v_{n}(x)$ that are continuous and piecewise differentiable. Thus, the ansatz
$\tilde{u}(x)=a_{0} v_{0}(x)+a_{1} v_{1}(x)+\ldots+a_{n} v_{n}(x)$ has shape functions v_{k} that are one on the respective nodal point k. Then, we use shape functions to represent the PDE on the mesh, e.g. using triangular functions $l_{1}(x)=1-x$ and $l_{2}(x)=x$ to obtain local element matrices

$$
E_{\text {step }}=\left[\begin{array}{ll}
\int_{0}^{1} l_{1}^{\prime}(s) \cdot l_{1}^{\prime}(s) d s & \int_{0}^{1} l_{1}^{\prime}(s) \cdot l_{2}^{\prime}(s) d s \\
\int_{0}^{1} l_{2}^{\prime}(s) \cdot l_{1}^{\prime}(s) d s & \int_{0}^{1} l_{2}^{\prime}(s) \cdot l_{2}^{\prime}(s) d s
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

that can then be used to construct the mesh matrix $M=1 / h \cdot E$ using mesh size h. Afterwards, the global Ritz matrix can be computed, e.g. for a one-dimensional mesh with 4 nodal points and 2 unknown inner points, yielding 4 base functions
$v_{1}, v_{2}, v_{3}, v_{4}$:

$$
R^{4}=\left[\begin{array}{cccc}
M_{0,0}^{(1)} & M_{0,1}^{(1)} & 0 & 0 \\
M_{1,0}^{(1)} & M_{1,1}^{(1)}+M_{0,0}^{(2)} & M_{0,1}^{(2)} & 0 \\
0 & M_{1,0}^{(2)} & M_{1,1}^{(2)}+M_{0,0}^{(3)} & M_{0,1}^{(3)} \\
0 & 0 & M_{1,0}^{(3)} & M_{1,1}^{(3)}
\end{array}\right]
$$

The system vector can then be calculated:
$\overrightarrow{r^{4}}=\left(\begin{array}{c}\int_{0}^{1} f(x) \cdot v_{0}(x) d x \\ \vdots \\ \int_{0}^{1} f(x) \cdot v_{3}(x) d x\end{array}\right)$
Finally, we have obtained the Ritz system: $R^{4} \cdot \vec{a}=\overrightarrow{r^{4}}$. That yields the approximation function (as defined by the ansatz): $\tilde{u}(x)=\sum_{i=0}^{3} a_{i} \cdot v_{i}(x)$ with a_{0} and a_{3} fulfilling the boundary conditions.
This shape function approach can also be applied to the Ritz vector. We get $\tilde{f}(x)=f\left(a_{0}\right) \cdot v_{0}(x)+\ldots+f\left(a_{n}\right) v_{n}(x)$ and we approximate $r_{k}^{n}=\int_{0}^{1} f(x) \cdot v_{k}(x) d x$ by $\tilde{r}_{k}^{n}=\int_{0}^{1} \tilde{f}(x) \cdot v_{k}(x) d x$ which essentially is $\tilde{r}^{n}=S^{n} \cdot \overrightarrow{f^{n}}$ where $\overrightarrow{f^{n}}$ is the vector of nodal values and $S_{k, j}^{n}=\int_{0}^{1} v_{j}(x) \cdot v_{k}(x) d x$

Example With Inhomogeneous B.C.

Given A real function $u(x)$ on interval $\Omega=[0,1]$ that satisfies the differential equation $u^{\prime \prime}(x)+8=0$ and the boundary conditions $u(0)=1$ and $u(1)=2$. We want to find an approximation function $\tilde{u}(x)$ using the meshes $[0,0.5],[0.5,0.75],[0.75,1]$ and linear shape functions.

Discretisation of Geometry

Solution

We get the following mesh matrices:
Mesh $1($ step size $=1 / 2)$:
$\frac{1}{h}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=1 / 2^{-1}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$
Mesh $2($ step size $=1 / 4)$:
$\frac{1}{h}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]$
Mesh 3 (step size $=1 / 4$):
$4\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]$
resulting in the global Ritz-Matrix and Ritz-Vector:
$\overbrace{\left[\begin{array}{cccc}2 & -2 & 0 & 0 \\ -2 & 2+4=6 & -4 & 0 \\ 0 & -4 & 4+4=8 & -4 \\ 0 & 0 & -4 & 4\end{array}\right]}^{\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right]}=\overbrace{\left[\begin{array}{l}\int_{0}^{1} f(x) v_{0}(x) d x \\ \int_{0}^{1} f(x) v_{1}(x) d x \\ \int_{0}^{1} f(x) v_{2}(x) d x \\ \int_{0}^{1} f(x) v_{3}(x) d x\end{array}\right]}^{\vec{a}}$
$=\left[\begin{array}{cc}\frac{1 / 2 \cdot 8}{2}=2 & \text { (area of red shape function) } \\ \frac{3 / 4 \cdot 8}{2}=3 & \text { (area of blue shape function) } \\ \frac{1 / 2 \cdot 8}{2}=2 & \text { (area of violet shape function) } \\ \frac{1 / 4 \cdot 8}{2}=1 & \text { (area of green shape function) }\end{array}\right]$
to satisfy inhomogeneous boundary conditions, we set a_{0} and a_{3} to the boundary condition in the vector \vec{a} and eliminate the corresponding equations, leading to the reduced Ritz system:
$\left[\begin{array}{cccc}-2 & 6 & -4 & 0 \\ 0 & -4 & 8 & -4\end{array}\right]\left[\begin{array}{c}1 \text { (b.c.) } \\ a_{1} \\ a_{2} \\ 2 \text { (b.c.) }\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

meaning

$\left[\begin{array}{cc}6 & -4 \\ -4 & 8\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]+\left[\begin{array}{l}-2 \\ -8\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
giving $a_{1}=5 / 2$ and $a_{2}=5 / 2$.

Example With Homogeneous Boundary Conditions

Given the differential equation $u^{\prime \prime}(x)+1=0$ on $\Omega=[0,1]$ with homogeneous boundary conditions. We want to approximate using meshes $[0,0.25],[0.25,0.75],[0.75,1]$.

Discretisation of Geometry

Since we have homogeneous boundary conditions, we can ignore v_{0} and v_{3} :

giving $\tilde{u}(x)=0 v_{0}(x)+a_{1} v_{1}(x)+a_{2} v_{2}(x)+0 v_{3}(x)$.

Solution

For steps 1, 2 and 3, we get the mesh matrices
$M_{1}=4 \cdot E, M_{2}=2 \cdot E, M_{3}=4 \cdot E$
using element matrix E of step function and thus the Ritz matrix
$R=\left[\begin{array}{cccc}4 & -4 & 0 & 0 \\ -4 & 6 & -2 & 0 \\ 0 & -2 & 6 & -1 \\ 0 & 0 & -4 & 4\end{array}\right]$
due to homogeneous boundary conditions, we cancel the first and last row and columns, resulting in the reduced Ritz system:
$\left[\begin{array}{cc}6 & -2 \\ -2 & 6\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}3 / 8 \\ 3 / 8\end{array}\right]$

Example With Funky $f(x)$

Problem: $-u^{\prime \prime}(x)=f(x)$ in $\Omega=[0,1]$ with
$f(x)= \begin{cases}8 & \text { if } x \in[0,1 / 4), \\ 24 & \text { if } x \in[1 / 4,1 / 2), \\ 40 & \text { if } x \in[1 / 2,3 / 4), \\ 16 & \text { if } x \in[3 / 4,1),\end{cases}$
and homogeneous b.c. and $h=1 / 4$.

The Ritz vector then is:
For $v_{1}: 8 \cdot \frac{1}{4} \frac{1}{2}=1 ; 24 \cdot \frac{1}{4} \frac{1}{2}=3 \rightarrow 1+3=4$
For $v_{2}: 24 \cdot \frac{1}{4} \frac{1}{2}=3 ; 40 \cdot \frac{1}{4} \frac{1}{2}=5 \rightarrow 3+5=8$
For $v_{3}: 40 \cdot \frac{1}{4} \frac{1}{2}=5 ; 16 \cdot \frac{1}{4} \frac{1}{2}=2 \rightarrow 5+2=7$
p-Strategy \downarrow
Using quadratic shape functions
$q_{1}(x)=(1-x)(1-2 x), q_{2}(x)=4 x(1-x), q_{3}(x)=-x(1-2 x)$ as shape functions

The v-functions for three nodes then look like

$$
\begin{array}{lrr}
v_{0}(x)= & q_{1}(3 x) ; & 0 ; \\
v_{1}(x)= & q_{2}(3 x) ; & 0 ;
\end{array}
$$

with an affine transformation of the x values onto the nodal points.
We get a new element matrix:

$$
E=\frac{1}{3}\left[\begin{array}{ccc}
7 & -8 & 1 \\
-8 & 16 & -8 \\
1 & -8 & 7
\end{array}\right]
$$

and the associated mesh matrix $M=1 / h \cdot E$. The Ritz vector can be computed analogous to the previous methods:
$\vec{r}=\left[\begin{array}{c}\int_{0}^{1} f(x) \cdot v_{0}(x) d x \\ \int_{0}^{1} f(x) \cdot v_{1}(x) d x \\ \vdots \\ \int_{0}^{1} f(x) \cdot v_{n}(x) d x\end{array}\right]$
with the difference that the integral is not as straight forward as with the triangle function (i except for baby Laplace problem
$u^{\prime \prime}(x)=0$, since there the Ritz-vector is zero and no integration needed)

Example

Given $-u^{\prime \prime}(x)=-2$ on $\Omega=[0,1]$ with $u(0)=1$ and $u(1)=3$ We want to approximate with \tilde{u} and $h=1$.

Discretisation of Geometry The resulting curves are exactly

where q_{1} and q_{3} are determined by the boundary conditions
Solution We get the mesh matrix and a resulting system
$\frac{1}{h=1} \frac{1}{3}\left[\begin{array}{ccc}\{7 & -8 & 1\} \\ -8 & 16 & -8 \\ \{1 & -8 & 7\}\end{array}\right]\left[\begin{array}{l}1 \\ a \\ 3\end{array}\right]=\left[\begin{array}{c}\times \\ \int_{0}^{1} f(x) \cdot q_{2}(x) d x \\ \times\end{array}\right]$
We only need to evaluate the integral of the q_{2} since the other curves are determined already. We receive:
$\int_{0}^{1}-2 \cdot\left(4 x-4 x^{2}\right) d x=-\frac{4}{3}$
and since we can eliminate the first and second row, we get:
$\frac{1}{3}(-8+16 a-24)=-\frac{4}{3} \quad \Rightarrow \quad a=\frac{7}{4}$
$\Rightarrow \tilde{u}(x)=1 \cdot q_{1}(x)+7 / 4 \cdot q_{2}(x)+3 q_{3}(x)$

Formulas and Basic Math

Roots

$$
\begin{aligned}
\sqrt[n]{a} \cdot \sqrt[n]{b} & =\sqrt[n]{a \cdot b} \\
\frac{\sqrt[n]{a}}{\sqrt[n]{b}} & =\sqrt[n]{\frac{a}{b}} \\
(\sqrt[n]{a})^{m} & =\sqrt[n]{a^{m}} \\
\sqrt[m]{\sqrt[n]{a}} & =\sqrt[m \cdot n]{a}
\end{aligned}
$$

Logarithm

$\log _{n}(a \cdot b)=\log _{n}(a)+\log _{n}(b)$
$\log _{n}(a \div b)=\log _{n}(a)-\log _{n}(b)$
$\log _{n}\left(a^{b}\right)=b \cdot \log _{n}(a)$

Quadratic Fromula

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
With discriminant $b^{2}-4 a c$:

1. $b^{2}-4 a c>0$, there are two distinct real solutions
2. $b^{2}-4 a c=0$, there is one real solution
3. $b^{2}-4 a c<0$, there are no real solutions

Trigonometry

"Normal"

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$1 \div \cot (x)=\tan (x)$
$\sin -\theta=-\sin \theta$ (cos and tan same)
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\cos 2 \theta=2 \cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta
$$

$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

Hyperbolic

$$
\begin{aligned}
& \sinh x=\frac{e^{x}-e^{-x}}{2}=\frac{e^{2 x}-1}{2 e^{x}} \\
& \cosh x=\frac{e^{x}+e^{-x}}{2}=\frac{e^{2 x}+1}{2 e^{x}}
\end{aligned}
$$

$\tanh x=\sinh x \div \cosh x$
$\operatorname{coth} x=\cosh x \div \sinh x$
sech $x=1 \div \cosh x=2 \div\left(e^{x}+e^{-x}\right)$

$$
1=\cosh ^{2}(x)-\sinh ^{2}(x)
$$

$$
-1=\sinh ^{2}(x)-\cosh ^{2}(x)
$$

$$
e^{x}=\cosh (x)+\sinh (x)
$$

$$
e^{-x}=\cosh x-\sinh x
$$

$\sinh (x \pm y)=\sinh (x) \cosh (y) \pm \cosh (x) \sinh (y)$
$\cosh (x \pm y)=\cosh (x) \cosh (y) \pm \sinh (x) \sinh (y)$

$$
\sinh (2 x)=2 \cdot \sinh (x) \cosh (x)
$$

$\sqrt{x^{2}+1}=\cosh (\operatorname{arcsinh}(x))$
$\sqrt{x^{2}-1}=\sinh (\operatorname{arccosh}(x))$

Derivatives	
$f(x)$	$\frac{d f}{d x}$
$\sinh (x)$	$\cosh (x)$
$\cosh (x)$	$\sinh (x)$
$\operatorname{arcsinh}(x)$	$1 \div \sqrt{x^{2}+1}$
$\operatorname{arccosh}(x)$	$1 \div \sqrt{x^{2}-1}(1<x)$
$\tan (x)$	$\cos ^{-2}(x)$
$\log (x)$	x^{-1}

Integrals

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C \\
\int \frac{1}{x} d x & =\ln |x|+C \\
\int \frac{1}{a x+b} d x & =\frac{1}{a} \ln |a x+b|+C \\
\int \frac{1}{(x+a)^{2}} d x & =-\frac{1}{x+a}+C \\
\int \frac{1}{1+x^{2}} & =\tan ^{-1} x+C \\
\int \ln a x d x & =x \ln a x-x+C \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C \\
\int \sin (a x) d x & =-\frac{1}{a} \cos (a x)+C \\
\int \sin ^{2}(a x) d x & =\frac{x}{2}-\frac{\sin (2 a x)}{4 a}+C \\
\int x \cos x d x & =\cos x+x \sin x+C \\
\int \sinh (a x) d x & =a^{-1} \cosh a x+C \\
\int \cosh (a x) d x & =a^{-1} \sinh a x+C
\end{aligned}
$$

Integration Techniques

Integration by Parts

$\int_{a}^{b} u(x) v^{\prime}(x) d x=[u(x) v(x)]_{a}^{b}-\int_{a}^{b} u^{\prime}(x) v(x) d x$
Or, with $u=u(x), d u=u^{\prime}(x) d x, v=v(x)$ and $d v=v^{\prime}(x) d x$:
$\int u d v=u v-\int v d u$

Substitution

$$
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Leibniz Integral Rule

$\frac{d}{d x}\left(\int_{a(x)}^{b(x)} f(x, t) d t\right)=$
$f(x, b(x)) \cdot \frac{d}{d x} b(x)-f(x, a(x)) \cdot \frac{d}{d x} a(x)+\int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) d t$
Special case where $a(x)=a=$ const. and $b(x)=b=$ const.:

$$
\frac{d}{d x}\left(\int_{a}^{b} f(x, t) d t\right)=\int_{a}^{b} \frac{\partial}{\partial x} f(x, t) d t
$$

Determinant

$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$
$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e g)$

Properties

- $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\operatorname{det}(I)=1$
- $\operatorname{det}(c A)=c^{n} \operatorname{det}(A) \quad($ for an $n \times n$ matrix $)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$

Particular Solutions to Simple ODEs

$$
\begin{array}{rll}
f^{\prime}(x)=\frac{c}{x} f(x) & \Rightarrow & f(x)=k_{1} y^{c} \\
f^{\prime}(x)=c \cdot f(x) & \Rightarrow & f(x)=k_{1} e^{c x} \\
f^{\prime \prime}(x)=c \cdot f(x) & \Rightarrow & f(x)=k_{1} e^{\sqrt{c} x}+k_{2} e^{-\sqrt{c} x} \\
f^{\prime \prime}(x)=-c \cdot f(x) & \Rightarrow & f(x)=k_{1} \sin (\sqrt{c} x)+k_{2} \cos (\sqrt{c} x) \\
f^{\prime}(x)+a f(x)=b & \Rightarrow & f(x)=\left(f(0)-\frac{b}{a}\right) e^{-a x}+\frac{b}{a}
\end{array}
$$

Harmonic Function

A function is harmonic if it fulfils $\Delta f=0$. The mean value property applies:
$u(x)=\frac{1}{\mu\left(S_{r}(x)\right)} \int_{S_{r}(x)} u(y) d \mu(y)$

Polar Coordinates

$x=r \cos \varphi$
$y=r \sin \varphi$
$r=\sqrt{x^{2}+y^{2}}$ (!) when converting $x^{2}+y^{2}$, it's r^{2} !
$\varphi=\operatorname{atan} 2\left(\frac{y}{x}\right)$
The Laplace operator in polar coordinates is

$$
\begin{aligned}
\Delta u & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} \\
& =\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}
\end{aligned}
$$

Tridiagonal Matrix

$M=\operatorname{tridiag}_{n}(a, b, c)=\left[\begin{array}{cccccc}b & c & & & & \\ a & b & c & & & \\ & a & b & c & & \\ & & \ddots & \ddots & \ddots & \\ & & & a & b & c \\ & & & & a & b\end{array}\right]_{n}$

